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ABSTRACT 

The primary objective of this study is to measure the effects of providing just-in-time (JIT) information to nurses 

during the medication administration process. While the expectation is that having access to JIT information is 

beneficial for healthcare providers, other factors such as the information being distracting, misinterpreted, difficult 

to use, or even have a detrimental effect, could be of no value, or lead to  adverse consequences.  

A clinical study was performed to evaluate the effect of JIT information on error occurrence during the 

administration of medication.  A smartphone app was designed to convey information to the nurses on an "on-

demand" basis.  The clinical study used a control group which had access to conventional information resources 

including a laptop based electronic medical records system and Medication Administration Record, and an 

experimental group which had access to the smartphone app.  The University of Tennessee Health Innovation 

Technology Laboratory was used as the test environment.  The results indicated that the availability of JIT 

information made a significant difference in reducing the occurrence of the error, as well as improving the 

understanding of patient chart information and decreasing the time for administering medication. 

An agent-based computer simulation model (ABM) was developed using the information generated from the 

clinical trial to validate that a model of the medication administration process could be developed.  This model was 

used to estimate the likelihood of the occurrence of the error at various levels of information input.   
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Chapter 1 

Background and Overview 

Background 

It is estimated that between 210,000 and 420,000 hospital patients suffer harm as a result of medical errors that 
contribute to their death each year [1]: a separate study has corroborated this estimate [2]. To provide some 
perspective regarding the scope of this problem, medical errors are the third leading cause of death following 
heart disease and cancer, accounting for about 10% of all deaths in the United States (Figure 1. 1). Medication 
errors, defined as “any preventable event that may cause or lead to inappropriate medication use or patient 
harm…” are a major contributor to this statistic [3]. Providing medication to a hospital patient is a complex, 
adaptive process that includes writing the medication prescription (i.e., ordering), preparation, dispensing of the 
medication by the pharmacy, and administering the medication to the patient typically by a nurse (Figure 1. 2). The 
focus of this study is on the potential of applying lean concepts to information and using just-in-time (JIT) 
information to influence dynamic decision-making as it affects the occurrence of hospital inpatient Medication 
Administration Errors (MAEs). A MAE is defined as, “a deviation from the prescriber’s medication order as written 
on the patient’s chart, manufacturers’ instructions, or relevant institutional policies” [4].  
 
This study follows the Industrial & Systems Engineering (ISE) approach that humans are an integral part of the 
overall system and that the design of the system needs to consider and accommodate the error performance of 
the human element in order to improve overall system performance, including any effort to decrease the 
occurrence of medication errors. 
 

 
Figure 1. 1: Proportion of annual deaths due to medical errors in hospitals [2]1 

 

 

                                                                 
1 Images included under title 17 section 107 U.S. Copyright Law Fair Use Doctrine as educational material distributed for use without profit. 
Adapted from: BMJ 2016; 353 doi: https://doi.org/10.1136/bmj.i2139 (Published 03 May 2016)    
https://www.bmj.com/content/353/bmj.i2139 

https://doi.org/10.1136/bmj.i2139
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Figure 1. 2: The medication administration process and how it relates to medical errors 
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Rationale/Purpose of Study 

A 1999 report by the Institute of Medicine concluded that as many as 98,000 annual deaths, among Americans, are 
associated with medical mistakes [5]. A more recent study in the Journal of Patient Safety concluded the number 
to be much higher, claiming that each year between 210,000 and 420,000 of those who are hospitalized suffer 
harm that contributes to their death.   A significant number of these deaths are a result of medication errors.  
These reports did not consider the nonfatal implications of medical error and the short and long term personal and 
economic costs associated with these errors.   

The primary objective of this study is to measure the effects of providing just-in-time (JIT) information to nurses on 
the occurrence of a medication administration error. While the expectation is that having access to JIT information 
is beneficial in executing the MAP, it is quite conceivable that other factors such as the information being 
distracting, misinterpreted, difficult to use, or another detrimental effect, could occur [6, 7]. 

As an example, electronic medical record (EMR) systems are enterprise-level computer systems that provide 
integrated patient information, including diagnostic reports, medical charting, physician orders, drug prescriptions, 
medical treatments, etc., were heralded as a resource that could provide significant process  

Improvement for healthcare and have positive impacts on healthcare costs and the quality of patient care. 
However, studies indicate that EMR systems are not necessarily delivering the breadth of positive benefits 
originally attributed to them and, in some instances, have resulted in various unintended negative consequences 
[8-10]. 
 
In their report, “Building a Better Delivery System: A New Engineering / Healthcare Partnership”, published in 
2005, the Institute of Medicine (IOM) notes that while other industries have embraced systems engineering tools 
to improve performance, the healthcare industry has been slow in adopting these methods. In particular, the IOM 
identifies “Human-information/communication technology system interfaces” as a fundamentally important area 
for improvement in healthcare operations [11]. 
 
The implementation of technology into end-user settings, such as EMRs, is typically fielded with exuberance and 
the promise of the technology to directly solve key problems. As referenced previously however, the challenges 
and unintended consequences resulting from the implementation of new technology demonstrate the reality of 
the actual difficulties and challenges faced when inserting technologies in a real-world setting. The proposed 
research intends to begin to address the challenges of insertion of this technology into healthcare. 
 
Hospital staff nurses are faced with numerous challenges in executing their tasks. Nurses are the frontline of 
providing patient care, serving as the backbone of the healthcare system: their performance is a key factor in 
determining patient outcomes. Interestingly, the impacts of nursing care have not been given the same 
consideration in terms of impact on systems performance of healthcare as other areas. From an I&SE perspective, 
much of the research and dialogue to-date has been related to nurse staff levels, workload, scheduling, or 
conventional ergonomics issues, such as back injury.  Significantly less research has been done on how nurses 
execute their job functions and the associated considerations of performance [12-15]. The proposed research 
considers how nurses function from a system point of view and intends to determine how providing lean JIT 
information can improve nurse performance and enhance the quality of patient care by reducing MAEs. 
 
Most decisions by healthcare providers in acute settings require dynamic decision-making (DDM), a process that 
occurs in continuously changing environments with multiple interdependent factors that are common in acute 
medical situations. A decision on one factor will impact the behavior of the other factors or decisions made in real-
time. Using the right method of information delivery is key to making correct decisions in a dynamic environment, 
as well as receiving the right information at the right time. 
 
The advent of affordable and powerful mobile computing technology (MCT), such as smart phones, provide the 
means to deliver key information in a just-in-time (JIT) fashion. This type of mobile technology has the benefits of 
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being programmable and versatile, unobtrusive, commercially available, relatively inexpensive, and easy to use. 
There also might be potential drawbacks of MCT in its current form such as limited battery life, information input, 
and computer security. 

The Research Problem 

Medical errors, especially MAEs, happen surprisingly frequently, with results ranging from having no consequence 
to patient death. The overarching question is, what can be done to mitigate the occurrence of MAEs? In particular, 
we are asking if JIT information can reduce the number of errors and improve dynamic decision-making when 
tailored to address specific types of medication administration errors. This undertaking raises several other 
corollary questions: How can systems engineering methodologies be applied to the nurse medication 
administration process to identify and mitigate errors? Can the error types of medication administration be 
identified and ranked or prioritized, and if so, how can it be used to improve the content of JIT information to 
reduce the likelihood of error occurrence? Lastly, computer modeling and simulation has found utility in many 
areas in healthcare, including evaluating the impact of changes to healthcare processes [16-18], however, based 
on extensive literature review, despite its utility and benefits, computer simulation and modeling, has not been 
used as a methodology to assess nurse performance in MAEs. 

Objectives of the Study 

The primary objective of this research is to develop a more fundamental understanding from an Industrial and 
Systems Engineering (I&SE) perspective of what causes MAEs by nurses and to explore possible strategies to 
reduce the incidence of these errors. 
 
At its core, the purpose of this study is to measure the effect of using just-in-time information on the occurrence of 
medication errors in acute care settings and, as a result, on the quality of care a patient receives, which is a key 
metric for healthcare performance. Specifically, we are attempting to evaluate how, or if, providing nurses with 
just-in-time (JIT) patient or medication information might affect the occurrence of a MAE. While the expectation is 
that having access to JIT information is beneficial for nurses in reducing the occurrence of errors, other factors, 
such as the information being distracting, misinterpreted, difficult to use, or even have a detrimental effect, could 
happen from the use of JIT information from a smart phone app. A key element of this effort will be to develop and 
demonstrate a model that simulates the nurse Medication Administration Process and the impact of process 
changes on MAE. 
 
Efforts contributing to the overall objective of this research effort are to: 

• explore and apply the concepts of JIT information delivery to determine their effects on MAEs and 
support dynamic decision making, 

• apply lean information concepts to determine the best subset of information content to provide, 

• assess the applicability of building a simulation model (e.g. Agent-based model, Bayesian network, or 
other modeling approach) to model MAEs from the context of nurse processes to a) determine if an 
acceptable model can be created and b) if such a model can simulate and measure the effectiveness of 
error prevention techniques, such as JIT information, on MAE occurrence.  

 
Additionally, with this study, I intend to demonstrate: 

• the use of MCT or a similar device in a simulated acute care setting, 

• the ergonomic advantages of personal mobile technology in a healthcare setting, 

• a qualitative/quantitative assessment of the effect of using JIT healthcare information delivered in a 
convenient and unobtrusive way, and 

•  using feedback from students and faculty, determine how the use of this technology could be improved 
in a healthcare setting. 
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Research Question 

We make the following propositions: 

• Nurses receive increasing amounts of information to process and act upon.  

• Effective “just-in-time” transfer of information to and from nurses improves decision-making and 
enhances the quality of care, patient safety, and, if done correctly, can reduce costs. 

• Information transfer and utilization can be studied through a system engineering approach (much like a 
manufacturing process) and, as a result, can be analyzed, modeled, and optimized. 

 
These propositions can be distilled down to the following core research questions: 

• What are the effects of just-in-time (JIT) information on improving the quality of care, patient safety, and 
decreasing costs via nursing care?  

• Can the organizationally and functionally complex JIT information dynamics, within clinical operations of 
nursing, be effectively modeled to determine the performance of systems operations by using advanced 
I&SE techniques and methodologies?  

• If so, what are the effects of employing specific mobile computing technologies (MCT) (e.g. smartphones) 
in an operational setting?  
 

Null Hypothesis (H0): JIT information will not make a measurable difference in the occurrence of MAEs. 
 
Hypothesis (H1): Providing key (e.g. lean) information to nurses in a JIT fashion will have a direct effect on nurse 
performance during the delivery of patient care as measured by QoC and PC; it will also have the benefit of 
reducing the cost of delivery of care. 
 
This hypothesis will be tested by: 1) defining the process(es) to identify the actual JIT information inputs/variables 
that influence the ability of nurses to execute operations; 2) considering the systems drivers that effect 
information transfer and integration, and defining methods to enhance and improve the efficiency of information 
utilization; 3) developing a systems model(s) using computer simulation that provides a mechanism to evaluate the 
effect of JIT information utilization on overall systems operations; and 4) identifying and implementing a prototype 
technology approach using technology in the form of a smartphone app. 

Research Design and Methodology/Proposed Approach 

Data Collection Approach 

The nature of this study directly lends itself to using a randomized control trial (RCT), which is the gold standard for 
clinical trials. To this end, three groups were defined: a control group receiving no intervention, a design group to 
assess the intervention protocol (aka pre-training group), and an experimental group to test the final intervention 
approach (aka post-training group). The intervention in this case is the delivery of JIT via Mobile Computing 
Technology (MCT) in the form of a smartphone app. 

A specific scripted training scenario on medication administration was constructed in conjunction with the 
University of Tennessee (UT) College of Nursing faculty. The scenario was conducted as a simulation in the UT 
Health Innovation Technology and Simulation (HITS) laboratory. This protocol provides an experimental 
environment that allows control for most variables. University of Tennessee fourth year student nurses 
participated as test subjects. Student nurses were presented with a scenario using the instrumented mannequins 
of the HITS lab and their performance was unobtrusively observed via the HITS monitoring cameras. All of the 
simulations were video and audio recorded for a detailed review. The process of medication administration will be 
evaluated for errors and near misses for each of the key steps of the medication administration process.  

The simulation scenario concerns a juvenile who is hospitalized for a tibia/fibula fracture. The patient has been 
prescribed too much acetaminophen and is in the early stages of hepatotoxicity. The scenario is structured to see if 
the nurses detect the medication error/dosing error. While seemingly simple, this is a complex scenario and 
requires the nurses to exercise considerable critical thinking and dynamic decision-making. The decision tree 
consists of over 100 nodes. 
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The video recordings of the student nurses will be reviewed to determine the set of variables to include in 
assessing errors and support building the computer model.  Potential variables could include: 

• Total number of errors committed 

• Specific errors committed 

• Near misses, i.e., behavior they self-corrected before the error was actually committed 

• Use of External information resources (e.g. DocuCare—A simulated medical records system provided as 
part of the simulation system) 

• Utilization of MCT 
 

A key component of this research effort is to construct a computer model that simulates the medication 
administration process (MAP) performed by nurses in a hospital. The goal is to have the model reflect the 
interaction of nurse(s), medication(s), and patient(s). This simulation will consider the generation of potential 
errors (e.g. near misses) and actual errors, and the effects of possible interventions in the form of JIT information 
on the mitigation of error occurrence. 

Expected attributes of the data generating process and resultant data and analysis of the process includes the 
following: 

• Limited data set—50-70 data points 

• Data will be obtained from a control group and an experimental/intervention group 

• The medication administration process is essentially a discrete-time random process 

• The medication administration process should follow a prescribed sequence of steps; in reality, the 
sequence of steps can change. It is possible the sequence of events could change the probability of error 
occurrence; this is particularly true for downstream events. 

• The process is assumed to not be recursive 

• The data includes the occurrence/non-occurrence of events, and the probability of their occurrence with 
the initial assumptions that all occurrences are detectable 

• The decisions/actions within the MAP are assumed to be binary (e.g. Yes/No, Perform/Don’t perform) 

• The process is at a minimum a function of the nurse’s actions, but could also be affected by the 
medication type, patient attributes, and environmental elements. 

Based on the attributes of the data and the MAP process, three modeling techniques have been identified along 
with their potential advantages and limitations as they relate to this effort: agent-based model (ABM), Bayesian 
Network (BN), and Markov model. The final modeling approach will be defined by the system attributes and 
attributes of the data collected. Figure 1. 3 is a graphical representation of the research approach. 

Agent Based Model Design Approach 

A standard methodology will be used to construct an agent-based model for simulating nurse MA.  Figure 1. 4 
provides a high-level flow chart describing the elements of the design approach.  The development process is 
iterative as noted by the red line indicating the flow of effort back to previous steps as additional insights are 
gathered in the development process. 

Agent Based Modeling has been initially selected as the approach to simulate the processes of nurses in delivering 
medications and assessing the occurrence of MAEs and approaches for mitigations.  A variety of modeling 
approaches have been considered, including discrete event simulation, Bayesian networks, and Markov chains.  
The ABM approach to modeling was selected because of its unique features that were described previously. 

The modeling approach will be to iteratively design more complex models exploring the feature set and functions 
of the model in order to determine the optimum combination of function, performance and complexity. 
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Figure 1. 3: Overview of research approach 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 4: Agent based model development process  
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An initial step in constructing an ABM is the definition of the agents.  Potential agents could include nurses 
delivering medication, other nurses, medical staff (e.g. physicians, administrators, supervisors, pharmacists, etc.), 
equipment and/or facilities (e.g. mediation carts, work stations), patients, family members, and medications.  
Within each agent there can also be classes of agents. For example, the agent patient can be subdivided into 
pediatric and adult or by hospital ward (e.g. surgical, cardiac, obstetrics/gynecology, etc.). 

Following the definition of agent types, the potential states that each agent can be in will be considered.  Using the 
patient as an example, states to be considered include, pain level, severity of malady, location (in room or not), 
consciousness, emotional state, etc.  States will be determined for each agent based on the factors identified in 
existing literature, model complexity and the model performance.  State charts will be developed for each agent. 

Other features of agents will be explored.  Considerations for agent features will include the ability to learn, 
interaction with other agents, adaptability to the environment, goal direction, and heterogeneity. 

Considering modeling of human behavior, specifically in HC using ABM, brings in an interesting construct.  Based 
on my effort evaluating the research to date, very little research has been identified during this literature search 
that relates specifically to considering the behavior, specifically cognition emotion or mental state, of healthcare 
providers as part of the ABM structure.  A considerable body of work exists on the modeling of patient behaviors 
at the macro level, such as in epidemics, or actions related to healthcare or similar venues. Contributory factors 
have been studied that influence the error occurrence with nurses These include, for example, stress, workload, 
and experience.  Table 1. 1 represents how these factors would look if they were mapped into the PECS structure.  

Little work has been done to understand the underlying causes of errors by nurses: it could be possible to draw 
analogies on underlying error causes from other areas such as aviation or nuclear facility operations. 

The environment within which the agents operate will be defined.  While conceptually simple, this can become 
quite complex.  In the instance of the research, the environment will be the “hospital”, but other environment 
features will need to be defined ranging from floor layout (effecting travel times perhaps) to elements that affect 
interaction of agents or the states of agents themselves.  Other environmental factors, such as policies, protocols 
and procedural boundaries, will be considered.   Considerations for the development of the model environment 
will include static vs. dynamic, complexity, emergent behavior, adaptiveness and self-modulation vs. external 
control.  

Agents can interact with their environment, as well as other agents as noted in the survey of the literature.  The 
two key features that will be explored are determining which agents will interact and the dynamics of the 
interactions.  Similarly, the environment-agent interaction will be defined as well.  It is assumed, at this point, that 
a network topology will be the initial construct for agent interaction. 

 

Table 1. 1: Notional mapping of nursing error contributors into PECS structure 

Social Status Cognition Emotion Physical 

Seniority 
Nurse type 
Education level 
 
 

Stress 
Fatigue 
Distracted 
Motivation 
Critical thinking 
Awareness 
Self confidence 

Frustration 
Overwhelmed 
Indifference 
 
 

Experience 
Workload 
Work area 
Patient type(s) 
Knowledge 
Training 
Communication 
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Model verification and validation will be based on comparing the output of the model simulations with observed 
performance of the nursing students.  Comparison will be done on the pre and post intervention trials to 
determine the alignment of the simulation results with the results of the student nurse outcomes.  Recall that the 
intervention for both the simulation and the student nurse exercise is the insertion of information at key moments 
of the MA process.  The final result being measured is the degree to which medication errors are mitigated.  Also, 
under consideration are near misses and alignment with the 5-rights of medication administration. 

Contribution 

This research provides a unique approach to understanding and potentially mitigating errors committed during the 
medication administration process. This study will provide a more complete understanding of how mistakes occur, 
the cognitive engineering drivers of the errors, how the errors might be mitigated by providing JIT information, and 
the development of a computer model that represents the medication administration process and the associated 
errors.  

This research is intended to demonstrate the utility of training simulation as a mechanism to provide a controlled 
environment for patient-related research. Performing similar research would have proved difficult for a variety of 
reasons, including an inability to provide a controlled experimental environment. Integrating systems engineering 
with the nurse training simulation has also increased the fidelity of the training simulation environment by 
providing a cognitive ergonomics approach to the design and execution of the simulation resulting in a better 
training experience for the students. 

Boundary of Research 
The boundary of this research is established along two vectors: the types of errors it examines and the way in 
which they are studied.  At its most general, this is a study on errors in system-processes and how to attempt to 
prevent them.  Errors in complex adaptive systems are evaluated from a bottom up perspective or in a 
component-oriented, hierarchal modeling approach as noted by Urban [19].  Hence, within the construct of the 
modeling, I am considering the behavior at the agent or individual level.  Specifically, this research uses the 
approach of looking at each process step and modeling the process based on the actions of the agent that is part 
of an overall system at the level of the individual carrying out the process.  
This research does not necessarily make a distinction between HE and non-HE as the triggering element of the 
error.  Rather, it is considering the cause and the cure as independent.  As an example, if the pharmacy has 
delivered the wrong medication or the infusion pump is broken does not matter, the study hopefully reflects on if 
the nurse recognizes the error.  However, HE is a focus of the research from the perspective of the agent executing 
the tasks. 

As JT Reason explained, the human is an integral part of any system.  I have adopted this philosophy, so in effect, 
the research focus is on how one element of the system, the human, functions in the overall sub system, the 
medication administration process (MAP).   

There are many ways to minimize or prevent error.  Providing appropriate information is one mechanism to do 
this.  This research goes several steps further in narrowing considering, specifically, the role of JIT information at 
the stage of task execution in preventing error.  Furthermore, as a conceptual boundary, I am attempting to build 
on the concept of poka-yoke to build a safety net of JIT information that helps to prevent errors.  

The boundaries of this research are (Figure 1. 5): 

1) The approach – considers an integrated or systems approach for looking at errors [Reason] 
2) The topical area – for the purposes of this research, it only looks at nurse MAE, but could be 

more broadly applicable 
3) The context – Looks at process systems components, i.e. elements of larger systems [think of 

systems dynamics] 
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4) The model - Considers the application of ABM as a way to model the performance of individuals 
in the error matrix 

5) The tools - Engages specific IE tools to deconstruct the potential causes of errors (i.e. FMEA) 
6) The intervention - Considers Just in Time information as the way of mistake proofing processes 

 

Similarities/Differences of this Research  

This research is based on a firm foundation of existing work from many sources.  Mark Twain had an uncanny 
ability to get to the point in a very poignant way: 
 

“There is no such thing as a new idea. It is impossible. We simply take a lot of old ideas and put them into 
a sort of mental kaleidoscope. We give them a turn and they make new and curious combinations. We 
keep on turning and making new combinations indefinitely; but they are the same old pieces of colored 
glass that have been in use through all the ages.”  

 
So, while the same is undoubtedly true for this research, the following highlights what I believe to be the 
similarities and differences of the research I have uncovered to date (Table 1. 2).2 

 

 

 

 

 

 

 

 

 

                                                                 
2 Quote from Mark Twain, Mark Twain’s Own Autobiography: The Chapters from the North American Review 
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Figure 1. 5: Boundaries of research 

 

Table 1. 2: Similarities and differences of research 

Similarities Differences 

Use of process and error analysis tools to identify key 
areas for improvement 

Combination of process, error and information to 
mitigate error impact  

Considering systems approach for error mitigation JIT as error mitigation “safety net” 

Evaluation of Nurse MAE Systems approach to Nurse MAE error 

Application of simulation approach to model a system Use of ABM for error evaluation especially for MAE 

Randomized control trial for healthcare studies Simulated environment (HITS Lab) to create controlled 
condition for nurse MAE 

Considering Lean applications to healthcare Using JIT information as an approach to Lean and poka 
yoke 
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Chapter 2 

Literature Review 

Approach  

This literature review will provide an overview of what medication administration errors are, what causes them 
and how they might be mitigated.  A comprehensive review of the literature was performed.  The structure of the 
search for research articles focused on the mitigation of medication administration error (MAE).  The databases 
used included Google Scholar, PubMed, Web of Science and Academic Search Complete.  Search terms included a 
variety of approaches and combinations to ensure a comprehensive review:  

• “Systems Engineering” mitigation 

• “Systems Engineering” “medication administration” also with “Medication administration errors” 

• “Industrial Engineering” “medication administration” also with “Medication administration errors” 

• Medication administration error factors (along with various combinations) 

• Medication administration error reduction (along with various combinations) 

• Other terms in addition to factors included tools, techniques, approaches and efforts 

• Focused searches on medication bar-coding, nurse MAE, medication delivery, medication delivery, 
medication error, adverse drug reactions 

• Other search terms and approaches were also used when specific references identified other research 
target areas 

 
As part of framing the research problem and defining a research approach, considerable effort has gone in to 
identifying and evaluating previous research and industry efforts related to this study.  One of the interesting and 
challenging aspects of this endeavor is the multidisciplinary nature of the proposed research.  The topic of interest 
is at the interface of a number of disciplines, which greatly expands the body of literature that is relevant.  
Research areas that have been identified, that are pertinent in some form to this study, are noted in Table 2. 1.  
Column one depicts the area of research reviewed, the indented research areas are subcategories of a broader 
area and each of these has been explored to some degree in the course of preparing for this research.  Those 
annotated with check marks have been deemed of direct relevance.  The research literature has been explored in 
depth for these areas: more than 400 citations have been referenced, considerably more were reviewed.  The 
following literature review will provide a much-truncated version focusing on: 

• Overview of the application of industrial and System Engineering (ISE) concepts to Healthcare 

• The current state of point of care clinical decision support tools (POCCDST) 

• Human error and its mitigation as related to the administration of medication and medication 
administration errors (MAE) 

• Just in time (JIT) information and the contribution to system performance 

• Application of agent-based modeling (ABM) to the modelling behavioral systems 

• Existing methods and technologies for mitigation of MAEs 

• Consideration of Lean concepts for improving the delivery of information  

• Industrial and Systems Engineering tool application to defining and preventing systems errors as related 
to MAEs  
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Table 2. 1: List of relevant literature area topics that were evaluated 

Research Area Applicability 

Lean Concepts ✓ 

Human Performance ✓ 

JIT Information (Knowledge Management) ✓ 

Process Map   

Human Factors ✓ 

Systems Engineering ✓ 

Systems Modeling ✓ 

Systems Monitoring ✓ 

I&SE Tools and Methods ✓ 

Systems Dynamics ✓ 

Soft Systems ✓ 

Complex Adaptive Systems ✓ 

    

Nurse Functions/Tasks ✓ 

Nursing Errors ✓ 

Factors Influencing Nurse Performance ✓ 

Physical Factors ✓ 

Environmental Factors ✓ 

Cognitive Factors ✓ 

Organizational Factors ✓ 

Patient Centered Care ✓ 

Quality of Care ✓ 

Simulation/Training ✓ 

Failure to Rescue   

  ✓ 

Dynamic Decision Making ✓ 

Decision Engineering ✓ 

Risk Management   

Group Decision Making   

Behavioral Decision Theory   

Decision Analysis ✓ 

Classical Decision Theory   

Decision Making Models ✓ 

Cognitive limitations   

Heuristic Limitations   

Information integration theory   

Cognitive Engineering ✓ 
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Table 2.1: List of relevant literature area topics that were evaluated (continued) 

Research Area Applicability 

Statistical Analytics   

Bayesian ✓ 

Predictive ✓ 

 Frequentist ✓ 

Decision Models   

Multi-criteria Decision Making   

AHP ✓ 

ANP ✓ 

Fuzzy VIKOR   

PROMETHEE   

ELECTRE   

    

Simulation Models   

Agent Based Model ✓ 

Bayesian Network ✓ 

ABM/Bayesian ✓ 

System Dynamic Model ✓ 

Monte Carlo   

Markov Chain   

    

Failure Modes   

FMEA ✓ 

FMECA ✓ 

HFMEA ✓ 

Process Tree ✓ 

Fault Tree   

Event Tree Modeling   

Decision Tree ✓ 

Root Cause    

Cognitive Reliability and Root Cause Analysis   

Causal Analysis ✓ 

Cause-consequence   

What if   

Relative Ranking   

Preliminary Hazard   

Probability Risk Assessment   

Error Definition ✓ 

Mental Workload Modeling   
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Table 2.1: List of relevant literature area topics that were evaluated (continued) 

Research Area Applicability 

Design of Experiments ✓ 

Random Clinical Trial ✓ 

Human Factors/Ergonomics ✓ 

Cognitive Ergonomics/Engineering ✓ 

Risk Assessment   

Human Error Analysis ✓ 

Human Error Models ✓ 

Latent Risk (Swiss Cheese Model) ✓ 

Human-Computer Interface ✓ 

Human Reliability Assessment   

Absolute Probability Judgment   

Human Error Assessment and Reduction Technique   

Human Reliability Analysis ✓ 

Cognitive Reliability and Error Analysis Method (CREAM) ✓ 

Human Factors Analysis and Classification System ✓ 

Technique for Human Error Rate Prediction (THERP) ✓ 

   

Operator Action Tree Analysis ✓ 

Justified Human Error Data Information   

Success Likelihood Index   

Technique for Human Error Prediction ✓ 

Standardized Plant Analysis Risk   

Accident Sequence Precursor   

Dynamic HRA   

Situation Awareness   

Mental Models   

Natural Language   

Distribution Cognition   

High Reliability Organizations   

    

Patient Safety ✓ 

Medication Error ✓ 

Medication Administration Error ✓ 

Medical Error ✓ 

Adverse Drug Events ✓ 
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Medication Administration and Medication Administration Error Overview 

The administration of medication is an essential function for the care and treatment of hospital inpatients.  The 
process flow of delivering a medication is, at face value, not particularly complex. However, it does have any 
number of process steps that are subject to the vagaries of human and system errors. The process can be 
described by a simple process flow diagram (Figure 2.1).  A healthcare provider orders a medication which gets 
sent electronically or is faxed to the pharmacy for preparation.  The medication, once prepared, gets delivered to 
the patient floor where it is typically administered by a nurse.  Somewhat surprisingly, while the process flow for 
nurse medication administration is well defined, it apparently has not undergone tremendous study or review 
from an I&SE perspective. Each healthcare facility will have their own unique approach depending on medications 
and equipment available.  Ghenadenik et al describes a general process for administering medications in Figure 2.1 
and Figure 2.2. 

 

Figure 2.2 breaks the administration process into additional detail.  The four general categories of Medication 
Administration (MA), patient assessment, administration provisos, delivery prep and delivery highlight the major 
considerations for the major elements in the reliable administration of medication.  Each of these elements, in 
turn, can be expanded into their respective constituent elements (Table 2. 2).   
 
Medication administration comprises 25%-30% of typical nursing shift; this varies across various clinical settings 
and patient types.  The tasks associated with administering medications are: information retrieval, obtaining and, 
verifying medications, medication delivery, documentation of medication administration, and management of 
physician order entry (Figure 2.3) [20]. 

Medications are an essential component of modern medicine’s arsenal to mitigate disease and illness. Medications 
are defined as “a substance intended for use in the diagnosis, cure, mitigation, treatment or prevention of disease; 
a substance (other than food) intended to affect the structure or any function of the body; and a substance 
intended for use as a component of a medicine but not a device or a component, part or accessory of a device” 
[21].  Medications include, but are not limited to, any product considered a drug by the Food and Drug 
Administration (FDA).  Given the number and variety of definitions for medication errors, the Institute of Medicine 
(IOM) has recommended that international definitions be adopted for medication error, adverse drug events, and 
near misses [22]. 

 

As noted previously, at its surface, MA would seem to be straightforward, but the actual process is much more 
complicated requiring multiple inputs and steps from the initiating step of prescribing a medication to the point of 
administering it to the patient.  Along each step, error can be introduced potentially resulting in inappropriately 
administering medication. While there are varying definitions of what medication error is, the National 
Coordinating Council for Medication Error Reporting and Prevention (NCCMERP) definition of a medication error is:  

"…any preventable event that may cause or lead to inappropriate medication use or patient harm while 
the medication is in the control of the health care professional, patient, or consumer.  Such events may be 
related to professional practice, health care products, procedures, and systems, including prescribing; 
order communication; product labelling, packaging, and nomenclature; compounding; dispensing; 
distribution; administration; education; monitoring; and use…” [23].  

 

 

 

Figure 2.1: Simple flow chart of hospital medication administration process 
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Figure 2.2: Process flow for medication administration 
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Figure 2.3: Average percentage of time spent on medication related activities by type 
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Table 2. 2: Description of medication administration elements 

MA Elements MA Steps Description 

Patient Assessment Assess for Pain/Need for Med Includes greeting the patient and initial 
assessment of patient's condition (e.g. 
vital signs, cognitive state, etc.) 

 
Review Orders/MAR/EMR Check the patient’s latest orders, lab 

results and other relevant records 
 

Patient Condition Suitable for 
Med 

Determine medical appropriateness of 
medication administration 

Administration Provisos Correct time for Med Based on orders and MAR determine if it 
is the right time to administer medication 

 
Suitable Form Factor/Route Based on orders and patient condition 

assess the correct physical form of the 
medication including the route in which 
the medication should be delivered (IV, 
orally, liquid, solid, etc.) 

 
Dose Calculation Performed Using the current information calculate 

the correct medication dosage 

Delivery Prep Retrieve Med/Verify Retrieve the medication and verify that it 
is the correct medication in the right form 
and amount, including preparation of the 
dosage amount 

 
Label Med for Delivery Label the medication with correct 

information (e.g. dose, patient name, 
etc.) 

Delivery Verify Patient Bring medication to the patient and verify 
that it is the correct patient through the 
approved process (barcode, query name 
or DOB, etc.) 

 
Verify Med Verify that the correct medication is at 

the correct dose and the correct form  
 

Deliver Med Provide the medication to the patient  

Evaluate medication effect 
/Follow-up 

Assess Patient Response to Med Check on the patient (via direct 
interaction or telemetry) to determine if 
the medication has had the desired 
response or has had a deleterious effect 
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Medication Administration Errors (MAEs) are a subset of medication errors.  As with the definition of medication 
error, MAE has a variety of definitions.  Most typically the definition of a MAE is “any deviation from the 
physician’s medication order as written on the patient’s chart”.  This definition, however, misses the perspective 
that physicians are no longer the only prescribing entity and does not consider the entire systems perspective of 
causative factors for MAEs.  In a review of literature, the definition typically cited, that is authored by nurses, is 
that of Wolf who defined MAE as “mistakes associated with drugs and intravenous solutions that are made during 
the prescription, transcription, dispensing, and administration phases of drug preparation and distribution” [24].  
The operational definition of MAE, for this study, will focus on the nursing process functions of medication 
dispensing.  Errors in medication administration can include[25]: 

• Prescribing the incorrect medication or dose 

• Writing or typing the wrong medication or dose 

• Illegible writing resulting in the wrong medication or dose being given 

• The wrong medication or dose is prepared by the pharmacy 

• The wrong medication or dose is delivered to the patient floor 

• The medication is not checked for contraindications with other medications or patient conditions 

• The medication order is misunderstood because of lookalike names or sound alike medication e.g.  

• Dose miscalculation 

• Medication is given at the wrong time 

• Medication is given in the wrong form or by the wrong route 

• Mistakes resulting from misreading of measurement units e.g. micrograms vs. milligrams 

• Misinterpreted or miswritten orders 
 
The MA process can be viewed as a system with inputs, outputs, resources, and controls.  Figure 2.4 diagrams the 
interactions of this process [26].  Ghenadenik also provides a detailed process map for the nurse medication 
administration process (Figure 2.5 and Figure 2.6).  While the medication administration process can vary 
significantly based on hospital specific procedures, available technology available resources, hospital ward and 
other factors, the process map is illustrative of a notional set and the interaction of medication administration 
process steps. 
 
MAEs can typically be classified as either acts of omission or commission. These acts are frequently described in 
the context of the “rights” of medication administration.  The most frequently used list of the rights are the five 
rights consisting of the right dose, right route, right patient, right medication, and right time.  
 
There are multiple definitions and classifications in the literature about types of medication errors, they however 
fall into a number of standard causal factors as shown in Table 2. 3[27]. 
 
The Ishikawa diagram in Figure 2.7 represents proximate and latent causative factors of preventable adverse drug 
events (ADE).  Note that ADEs are a direct result of medication errors.  The literature indicates that that ADEs, in all 
health care settings, arise from a combination of contributing elements including patient, organizational, provider, 
policy, and procedure factors.  While the items identified in Figure 2.7 may not play a role in all settings they 
certainly should be considered as possibly contributory elements [28]. 
 
In a limited study using a semi-structured survey, Tang explored the causes for MAEs from the nurse’s perspective.  
The great majority (76.4%) believed that there was typically more than one factor contributing to the occurrence 
of MAEs.  The 75 nurses, participating in the study, identified the following as major contributory elements in 
order of the percent of the nurses identifying each factor with ‘Personal neglect’ (86.1%), ‘heavy workload’ (37·5%) 
and ‘new staff’ (37·5%) which were the three main factors in the eight categories. ‘Need to solve other problems 
while administering drugs, ’advanced drug preparation without rechecking,’ and ‘new graduate’ were the top 
three of the 34 conditions. Medical wards (36·1%) and intensive care units (33·3%) were the two most error-prone 
places. The errors common to the two were ‘wrong dose’ (36·1%) and ‘wrong drug’ (26·4%). Antibiotics (38·9%) 
were the most commonly mis-administered drugs [29]. In a study using a somewhat similar methodology, the 
authors sought to uncover MAEs using a different set of questions.  Table 2. 4 highlights the results. 
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Figure 2.4: Inputs to the medication administration process3 

 

                                                                 
3    Image included under title 17 section 107 U.S. Copyright Law Fair Use Doctrine as educational material distributed for use without profit. 

Source: http://www.cjhp-online.ca/index.php/cjhp/article/view/1161/1552 
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Figure 2.5: Elements of the medication administration process Part 14 

                                                                 
4 Images included under title 17 section 107 U.S. Copyright Law Fair Use Doctrine as educational material distributed for use without profit 
Source: http://www.cjhp-online.ca/index.php/cjhp/article/view/1161/1552 

http://cjhp-online.ca/index.php/cjhp/article/view/1161/1552
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Figure 2.6: Flowchart of mediation administration process Part 25 

 

                                                                 
5 Images included under title 17 section 107 U.S. Copyright Law Fair Use Doctrine as educational material distributed for use without profit. 

Source: http://www.cjhp-online.ca/index.php/cjhp/article/view/1161/1552 
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Table 2. 3:  Categorization and definition of medication errors 

Types of errors Definition Example6 

Dosage errors 
 

Medications administered in doses 
greater or smaller than what had 
been prescribed 

Prescription for 25mg of captopril 
and a 50mg dose was administered 
 

Time errors Medication administered to patient 
in a time different from that which 
had been prescribed or 
predetermined (e.g. more or less 
than a 1-hour difference) 

Prescription for vancomycin at 6 
pm and administered at 7:20 pm or 
prescription for enalapril at 10 am 
and administered at 8 am 
 

Unauthorized Administering medication that has 
not been prescribed by the 
physician 

Administering amoxicillin instead 
of amoxicillin combined with 
clavulanate 

Technique error Medication incorrectly formulated 
or manipulated, before 
administering or using 
inappropriate procedures or 
techniques to administer a 
medication 
 

Not measuring doses 
appropriately, or not using the 
infusion pump for the 
administration. For instance, 
to administer iron sulfate after 
meals or not verify the systemic 
arterial blood pressure before 
administering hypertensive 
medication 

Route errors Administering medications using a 
route different from what had been 
prescribed 

Prescription for intravenous 
administration and administered 
orally 

Wrong dose Administering an extra dose to 
what had been prescribed or a 
medication that had been 
suspended 

Administering captopril that later 
was suspended in the prescription 
 

Prescription error Incorrect selection of the 
medication, dosage, presentation, 
administration route, infusion 
speed, inadequate use of 
instructions by physician and not 
registering a verbal prescription 

Prescribing omeprazole for 8 pm, 
when it should be administered at 
6pm, before dinner 
 

Omissions Not administering the medication 
to the patient 
 

The professional prepared the 
aerosol with saline at 0.9% and 
berotec and did not add the 
ipratropium bromide that had also 
been prescribed 
 

Wrong patient Administering the medication to 
the wrong patient 
 

Phenytoin was prescribed to 
patient A but was administered to 
patient B 

Wrong form Administering medication in a way 
different from what had been 
prescribed 

Furosemide tablets were 
administered instead of an 
ampoule 

                                                                 
6 Captopril – ACE inhibitor for high blood pressure; vancomycin – antibiotic; elapril – blood pressure medication; captopril – high blood pressure 
medication; omeprazole – medication for acid reflux; berotec – bronchodilator; ipratropium bromide – bronchodilator; phenytoin – antiseizure 
medication; furosemide – diuretic. 
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Figure 2.7: Ishikawa diagram of medication administration error7 

 

Table 2. 4: Causative factor of nurse MAE 

Causes % of Nurses 

Nurse fails to check name band with MAR  45.8 

Nurse is tired and exhausted  33.3 

Physician prescribes wrong dose  30.4 

Nurse miscalculates dose  29.2 

Confusion between 2 drugs with similar names  29.2 

Physician's writing is illegible  28.0 

Nurse distracted by patients, co-workers, and events in the unit 25.0 

Nurse confused by different types and functions of infusion device  25.0 

Medication labels/packaging is poor quality/damaged  25.0 

Nurse sets up/adjusts infusion device incorrectly  24.0 

Source: [30] 

 

                                                                 
7 Images included under title 17 section 107 U.S. Copyright Law Fair Use Doctrine as educational material distributed for use without profit.  
Source:  https://health.gov/hcq/pdfs/ADE-Action-Plan-Prevention-Approaches.pdf 
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How and why MAEs occur has been studied extensively.  Research in the 1960’s evaluated MAE as part of 
implementation of drug distribution systems [31].  Over the ensuing almost 60 years technology has changed but 
MAEs and the associated causes have not changed significantly. The statistics on errors vary depending on the 
study methodology.  A review of research on MAE occurrence evaluating 66 studies concluded Medication 
administration errors among inpatients is frequent with the median error rate estimated at 10% of medications 
administered not including wrong time errors [32]. 

 

Individual areas, such as slips and lapses, are the most commonly reported unsafe acts, other factors include 
knowledge-based errors and deliberate violations of procedures.  Conditions leading to errors in medication 
administration include communications (verbal orders, poor writing), medication supply, unusual medication (off-
label, special order), patient factors (acuity, availability), staff factors (shortages, floating nurse), staff health status 
(fatigue, stress) and interruptions/distractions during drug administration.[4]. 

 

Medication errors are typically divided into four categories: prescribing, transcribing, dispensing and 
administration. Various studies provide slightly different rates of error in these categories; however, the rates are 
relatively close[33], [34, 35],[35].  MAE is consistently represented as one of the top causes of medication errors 
(Figure 2.8). 

 

A systems level evaluation of systems factors identified various causative factors contributing to errors in 
medication administration.  Drug distribution systems, including scheduling, delivery and dispensing of 
medications, are a key source of errors. The Medication distribution system can be described as a system of 
systems.  Included in this would be medication delivery from the pharmacy, medication preparation, scheduling of 
medications, and (e.g. Monday-Friday System vs. out of hours system) [36]. 

Many activities in healthcare are process dependent, executing tasks in a specific manner is required to achieve 
the desired outcome.   Deviation from procedures, both intentional and unintentional, results in errors.  These 
deviations can result from increased workload, understaffing, stress, long hours, inexperience and lack of 
knowledge [36]. 

 
Figure 2.8: Allocation of error type for medication errors 
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When focusing specifically on causative factors of how nurses fall victim to MAEs, a number of factors come to the 
forefront.  The studies are consistent in identifying underlying factors, such as personal neglect, heavy workload 
and new staff [29, 37].  

 

Nursing is a dynamic and complex process.  On average nurses are interrupted between seven and ten times per 
hour, that is once every six minutes, and these breaks in concentration and workflow are known to be significant 
factors influencing error occurrence[38-40].  In virtually all cases, more than 90%, these interruptions resulted in 
negative outcomes effecting efficiency and error rates [40].   
 
Other factors are obviously at play for effecting MAE rates by nurses.  Tang et. al. summarizes these factors in 
Table 2. 5. As a point of definition, Personal Neglect could perhaps be more aptly termed personal distractions and 
includes such elements as: must solve other problems while administering drug, advance drug preparation without 
rechecking, poor mood that day, interruption, physical discomfort, tired, etc.  Sears observes that in addition to 
the “5 Rights” that work, environment plays a key factor in the occurrence of MAEs [41]. 
 
In a research literature review by Robinson of medication errors made by students during the medication 
administration phase, their findings provide a number of important observations (Table 2. 6).  Most medication 
errors were those of omission; patients did not receive the ordered medication.  Wrong dose errors occurred with 
the next most frequency followed by providing the medication to the wrong patient.  Table 2. 11 summarizes their 
results on the type and frequency of MAE by students. [24] 
 
Also relevant to our study is the underlying cause of MAE as it relates to student performance.  Zane lists the 
causes and frequency of Student’s medication errors.  Notable in terms of relation to this dissertations’ research 
are the top three causes of error listed in Table 2. 6.  Also significant, in terms of errors, are drug dose calculation 
and contraindications: these factors would be ideal candidates for JIT information or knowledge management 
approaches to reduce MAEs. 
 
In a study, using a somewhat similar methodology, the authors sought to uncover MAEs using a different set of 
questions.  Table 2. 7 highlights the results: 
 
This study focused on medical-surgical nurses and as with the study by flung, used a survey to gather the 
perception of nurses on the causes of medication error [30]. 
 
Westerbrook et al focused-on interruption in the clinical setting as a cause for an increase in the occurrence and 
severity of MAEs.  In their study they noted a 12.1% increase in procedural failures and a 12.7% increase in clinical 
errors resulting from the influence of interruptions.  As part of their study, they also baselined the general 
occurrence of MAEs independent of interruption.   
 
Of course, training and education play an important role in reducing MAEs. Pauly-O’neill explored simulation in 
training as a means to improve patient safety in pediatric medication administration.  Master’s level Nursing 
students were cycled through a training simulation in an education simulation center.  The training scenario 
included calculating IV dose and rate.  One set of students performed the simulation prior to specific training on IV 
delivery while a second group of Junior BSN Nursing students were provided training on IV administration 
(intervention group).  Results indicated that the post intervention group had consistently fewer MAEs. [43]. 

 

One of the challenges in studying MAE is the inconsistency or lack of event reporting.  While certain seminal events 
are widely publicized and well known, MAEs are considered to be largely under-reported [44, 45].  Perhaps equally 
as important are the near-misses which are known to be indicators or predictors of the occurrence of actual errors 
[46, 47].  The issue of under-reporting errors directly impacts the fidelity of simulations that might be constructed 
to model the occurrence of MAEs and using these models to measure the effect of modifications to the MAE 
process.[48] 
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Table 2. 5: Nurses' report of the cause of medication error (N = 72; multiple response) 
 

Category Nurse (n) Percentage Rank 

Personal Neglect 62 86.1 1 
Heavy Workload 27 37.5 2 
New Staff 27 37.5 3 
Unfamiliarity with Medication 23 31.9 4 
Complicated doctor-initiated order 17 23.6 5 
Unfamiliarity with patient’s condition    16    22.2      6 
Complicated prescription 15 20.8 7 
Insufficient training 11 15.3 8 
Others  1 1.4  

Total 199   

Source: [29] 
 

Table 2. 6 Medication administration error types by students (N=1208)  

Type n % 

Omission error 248 19.00 
Improper dos/quantity 242 17.16 
Wrong time 221 16.93 
Extra Dose 184 14.09 
Wrong patient 120 9.19 
Unauthorized drug  110      8.42 
Wrong route 47 3.60 
Wrong administration technique 44 3.37 
Wrong drug preparation 40 3.06 
Wrong dose form 5 0.38 
Prescribing error 1 0.07 
Not classified by type 61 4.67 

Total 1305 100.00 

Records in which types of errors were reported 1208 92.56 

Total no, of types of errors 1244  

Source: [42] 
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Table 2. 7: Causes of students' medication errors (N=1,135) 

Cause           n         % 

Performance (human) deficit 579 51.01 

Procedure/protocol not followed 362 31.89 

Knowledge deficit 301 26.52 

Communication 192 16.92 

System safeguard(s) 90 7.93 

Documentation 88 7.75 

Monitoring inadequate/lacking 46 4.05 

Dose form confusion 33 2.91 

Calculation error 29 2.56 

Written order 24 2.11 

Incorrect medication activation 21 1.85 

Drug distribution system 19 1.67 

Handwriting illegible/unclear 18 1.59 

Dispensing device involved 16 1.41 

Transcription inaccurate/omitted 16 1.41 

Packaging/container design 14 1.23 

Abbreviations 10 0.88 

Brand names look alike 10 0.88 

Brand names sound alike 10 0.88 

Pump improper use 9 0.79 

Brand/generic names look alike 7 0.62 

Computer entry 7 0.62 

Generic names look alike 7 0.62 

Information management system 7 0.62 

Preprinted medication order form 7 0.62 

Brand/generic names sound alike 6 0.53 

Diluent wrong 6 0.53 

Equipment design 6 0.53 

Labeling  5 0.44 

Generic names sound alike 4 0.35 

Label (manufacturer's) design 4 0.35 

Prefix/suffix misinterpreted 4 0.35 

Computer software 3 0.26 

Label design 3 0.26 

Measuring device 3 0.26 

Reference material 3 0.26 

Similar packaging/labeling 3 0.26 

Verbal order 3 0.26 

Contraindicated-drug allergy 2 0.18 

Contraindicated- drug/drug 2 0.18 
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Table 2. 7: Causes of students' medication errors (N=1,135) (continued) 

Cause           n         % 

Decimal point 2 0.18 

Pump- failure/malfunction 2 0.18 

Storage proximity 2 0.18 

Contraindicated in disease 1 0.09 

Contraindicated<comma> drug/food 1 0.09 

Fax/scanner involved 1 0.09 

Leading zero missing 1 0.09 

Nonmetric units used 1 0.09 

No cause identified 170 
 

Records in which types of cases were reported 1,135 86.97 

Total no. of causes reported 1,990 
 

Source: [42] 

 

 

Mitigations of Medication Administration Errors 

While much study has been conducted on approaches to the reduction of MAEs, it appears fractured and 
disjointed.  Additionally, the approaches have been largely based on considering the elements of the process and 
not considering the overall medication administration process as a system.  Systems factors have been identified 
by several authors [49-51] in considering approaches to remediating MAEs.  However, at the risk of sounding 
critical, the inclusion of systems thinking is at a somewhat superficial level.  It is perhaps interesting to note that at 
the time of this writing, a systems model or simulation has not been identified in the published literature. 

 

Most of the remedies to MAEs are focusing on elements of the process, such as barcoding of medications [52], 
reduction of interruptions [53, 54], and automated medication delivery systems [55].  The challenge with each of 
these individual approaches appears to be missing the underlying systems (as defined in a Systems Engineering 
context) causes contributing to MAE occurrence.  

Industrial and Systems Engineering Context for MAE 

Many of the issues and challenges in HC are a result of how HC workers conduct their work.  The same factors 
influencing performance in sectors such as auto manufacturing, airlines, shipping, and aerospace, have also been 
found in HC (Kullberg). While each sector can argue they are different, the fundamental features are the same.  ISE 
is in a unique position to find the remedies to the ills of the HC system as we have done for these other sectors. 

 

The consideration of using Industrial and Systems Engineering (ISE) in HC are traced back to Dr. Lillian Gilbreth.  In 
the original foreword to the book Hospital Management Engineering, Gilbreth wrote:  

 

“Many hospital people who hear of industrial engineering and the possibility of its application to their 
work react by claiming that their work is different.  However, when such people see the similarity between 
their work and work in other areas, a good start has been made – a start which permits objective review 
and evaluation” [56].   

 

While the practice of ISE is said to have started in the 1940’s, the efforts of Gilbreth and Smalley go back to 1952. 
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The challenges faced by the HC system Smalley identified in the first edition of his book in 1966, matched what he 
wrote in the revision in 1982, and are the same today.  He talks to the consistently large increases in cost 
referencing $13B in 1950 to $200B in 1980.  Not surprisingly, as an industrial engineer, he states: 

 

 “Improvements in the operation of hospitals depend, in large measure, on the capabilities of those who 
manage hospital affairs and, on the methods, procedures, and systems used in striving towards hospital 
goals.  Thus, hospital improvements are realized through both management improvement and methods 
improvement” [56]. 

 

Smalley’s book goes over many of the key areas one would consider appropriate when considering ISE applications 
to HC (hospitals in this case).  One will find Table 2. 8 contents edifying. 

The contents of this book from the 1960’s, with only changing a few dollar figures and references, could be 
reprinted today and be equally as relevant.  The book also considers elements such as lean, total quality 
management (TQM), modelling and simulation, integration of information systems into day-to-day management 
efforts of hospitals and multidisciplinary approaches to management of HC operations.  

 

In 2010 the U.S. Agency for Healthcare Research and Quality (AHRQ) held a workshop to “develop a research 
agenda at the intersection of industrial and systems engineering and health care” [57].  This background report, 
along with the associated documents, identified a number of key themes, items particularly relevant to this 
research are italicized: 

 

1. The current health care delivery system is both unsustainable in terms of cost and suboptimal in 
terms of value.  

2. The current health care delivery system cannot adequately respond to changes in the larger 
environment and within the medical sciences.  

3. Solving the problems of the health care delivery system is complex and will require approaches that 
are multidimensional, multileveled, and inclusive of multiple stakeholders.  

4. Information technology will play a key role in the future health care delivery system.  
5. Incentives are needed to promote change, including the use of systems engineering tools, 

information technology, and evidence-based medicine.  
6. Opportunities are needed for cross-education and collaboration between health care professionals 

and scientific and technical professionals such as engineers and computer scientists.  
7. Research funding is needed to explore the intersections between health care and the use of systems 

engineering tools, computer science methodologies, and information technology.  
  

 

Table 2. 8 Contents of Hospital Engineering: A guide to the improvement of hospital management systems 

Chapter 1 Introduction (need for improvement) Chapter 2 Hospital History 

Chapter 3 The Nature of Hospitals Chapter 4 The Methods of Improvement 

Chapter 5 Modern Professional Programs Chapter 6 Foreign Programs 

Chapter 7 Management Problem areas Chapter 8 Improving Work Methods 

Chapter 9 Measuring Performance Chapter 10 Staffing and Scheduling 

Chapter 11 Sampling Hospital Activities Chapter 12 Personnel Management 

Chapter 13 Dealing with Variability Chapter 14 Forecasting 

Chapter 15 Managerial Control Chapter 16 Waiting Lines 

Chapter 17 Facility Planning Chapter 18 Economic Evaluation 

Chapter 19 Resource Allocation Chapter 20 Information Systems 

Chapter 21 Health Systems Planning  



www.manaraa.com

31 
 

This report provides detailed discussions of developing and implementing a research agenda for improving the 
operational efficiency of HC.  In particular, it focuses elements that can be conducted within the next 5-7 years 
with implementation in less than 15 years.  The output from this workshop provides a reasonable outline of 
research areas matching the needs of HC.  The summary of these research areas is summarized below.  Table 2. 9, 
reproduced in total from the final report, highlights areas of research for ISE in HC. 

 

The tedious replication of this information was for the benefit of highlighting those key areas of research that 
considers sensor data integration.  Of special interest are those areas that integrate real time data acquisition 
along with modelling and simulation. 

 

The observation to be made by considering the 1950’3-1980’s view and efforts of applying ISE techniques to 
healthcare and those of 2010 is that despite six decades of effort to improve, HC we still face many of the same 
challenges. In many circumstances the problems are even more complex and challenging.   

 

With this in mind one is left to wonder why, after 60 years of effort, has there not been what appears to be 
satisfactory progress in improving HC operations.  While a comparison of operational progress between industries 
has not been found yet (e.g. improvements in the automobile or airline industry vs. HC) it appears, at least 
anecdotally, that HC is lagging behind other industries (although I have not seen an objective quantitative 
comparison).  Considering the work identified in Hospital Management Engineering, it appears that attempts have 
been ongoing in HC well before the first printing of the book in the 1966. 

 

The Institute of Medicine produced a Report “The Path to Continuously Learning Health Care in America” which 
identifies that a learning system is needed where incentives are actively aligned to encourage continuous 
improvement and reduce waste [58].  They recognized the need for an integrated approach both at the micro but 
also operational level portrayed below in Figure 2.9. 

Just-in-time, Real-time, Lean Information in HC 
The advent of lean has slowly progressed into HC.  Given the pressures for increased performance and lower cost, 

lean has gained a strong foothold and has generally been embraced by larger medical facilities in the early 2000s 

[59].  A survey of internet websites using “Lean “healthcare” or “health care” resulted in over a million hits. Phillips 

Health Care, Deloitte, McKinsey, Price Waterhouse, Kaiser, Boston Consulting Bain and virtually every other HC 

management consulting firm advertises an ability to support lean efforts in HC.  A simple search of Amazon .com 

for books on lean healthcare resulted in more than 280 titles.  There are certifications available for lean healthcare 

management and many organizations and universities offer short courses or for credit courses for it. 

The realities of implementing lean are being experienced by HC as they have previously by other industries.  It is 
not uncommon to have over-inflated expectations, receding results and resistance to implementation of lean 
processes.  Although lean offers considerable potential benefits, the challenges and issues that it is facing in the 
complex environment of HC are resulting in the recognition that lean “might not be the easy remedy for making 
both efficiency and effectiveness improvements in healthcare” [60].  

 

Lean has been applied to many aspects of HC mostly focusing on narrow albeit a broad array functions such as 
surgery [61, 62], emergency departments [63, 64], and laboratory operations [65].  These are just a few examples 
of the applications of lean in healthcare.  Notable is the application in narrow fields and the lack of implementation 
of a system that will semi-automatically are automatically provide reporting of status on performance or a means 
to provide reporting across functions to determine cross functional impacts.  That is, no research has been found 
yet in HC that identified a system that provides real-time information on the process to allow its effective 
monitoring. 
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Table 2. 9: Areas of research for ISE in HC8 

Area of Application Description 

System Monitoring 
(Knowledge Innovation)  

 

• Identification of best practices for dissemination and 
adoption of ISyE knowledge 

• Identification of best practices for spreading new ISyE 
knowledge between research and industry institutions 
and among industry institutions  

• Methods to characterize processes, inputs, and 
outcomes  

• Methods to collect and present information that is 
valuable to diverse stakeholders such as patients, 
nurses, primary care and specialty physicians, 
pharmacists, and social workers  

• Theories and methods for the translation of 
numerical, analytical, and computational results into 
understandable and actionable information that 
multiple stakeholders (nurses, primary and specialty 
care physicians, pharmacists) and lay people can 
seamlessly retrieve to ensure the human monitoring of 
the system  

System Modeling 
(Knowledge Innovation)  

 

• Models to mitigate uncertainties about the future  

• Models to explore the role and consequences of 
automation, and provide guidance about what can be 
fully, partially, or not at all automated  

• Optimization models  

• Models that incorporate errors and interaction of 
events  

System Modification 
(Knowledge Innovation)  

 

• Improving lay people's understanding of analytical 
results by developing enhanced data visualization 
techniques  

• Determining the benefits, limitations, and appropriate 
use of national, regional, and institutional forcing 
functions within the health care setting  

• Determining the role of culture as a necessary 
element of health care improvement, including the 
national political conversation and at the level of the 
patient and provider  

 

 

 

                                                                 
8 Source: Valdez RS, Ramly E, Brennan PF. Industrial and Systems Engineering and Health Care: Critical Areas of Research--Final Report. 
(Prepared by Professional and Scientific Associates under Contract No. 290-09-00027U.) AHRQ Publication No. 10-0079. Rockville, MD: Agency 
for Healthcare Research and Quality. May 2010. 
http://healthit.ahrq.gov/portal/server.pt?CommunityID=666&spaceID=399&parentname=&control=SetCommunity&parentid=&PageID=0&spa
ce=CommunityPage&in_tx_query=Industrial+and+Systems+Engineering+and+Health+Care&Submit.x=11&Submit.y=4&parentid=&PageID=0&s
pace=CommunityPage&in_tx_query=Industrial+and+Systems+Engineering+and+Health+Care&Submit.x=11&Submit.y=4 
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Table 2. 9: Areas of research for ISE in HC (continued) 

Area of Application Description 

Knowledge Transfer  

 

• Identification of best practices for dissemination and 
adoption of ISyE knowledge  

• Identification of best practices for spreading new ISyE 
knowledge between research and industry and within 
industry  

Meta-Knowledge 
Integration  

 

• Mapping the usefulness of ISyE knowledge to 
different health care contexts  

• Characterizing research frontiers and directions at the 
intersection of ISyE and health care  

Research Agenda Items That Support Breakthrough 

System Monitoring 
(Knowledge Innovation)  

 

 

• Consumer-facing health IT solutions that allow 
patients to self-support their observations, that track 
and report on trends, and that interact with providers' 
annotations  

• Technologies which enable data to flow quickly and 
securely through the whole health care delivery 
system and be available in real-time when and where 
needed  

• Methods to operationalize contextual knowledge  

• Methods to effectively collect and share data in real-
time to foster situational awareness of all individuals 
involved in patient care  

System Modeling 
(Knowledge Innovation)  

 

• Frameworks that explore the integration of many care 
sources in the production and delivery of care services, 
and the coordination among these sources ( e.g., end 
of life care)  

• Methods to model systems as set of flows and 
processes not just sets of components  

• Models that explore the effective use and allocation 
of different vehicles of health care delivery (e.g., 
“focused factories” versus integration, such as Mayo 
Clinics and Kaiser Permanente)  

• Models to evaluate entire systems and large-scale 
system changes before they are implemented  

• Models of collaboration and competition among 
health care stakeholders  

• Models that consider how health IT can be integrated 
into decision making processes, how evidence-based 
knowledge can be integrated into practice  

• Models of collaboration and competition among 
health care stakeholders  

• Methods to build models from incomplete, 
inaccurate, and unreliable data  

• Methods to build models from inconsistent data 
coming from disparate sources  

• Methods to model unstable systems  

• Methods to model large-scale distributed systems 
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Table 2. 9: Areas of research for ISE in HC (continued) 

Area of Application Description 

System Modification 
(Knowledge Innovation)  

 

• Determining ways to modify public and private 
incentives to influence patients to stay healthy, 
providers to work in the best interest of their patients, 
and organizations to be efficient, without unintended 
negative consequences  

• Exploring payment structures that accommodate 
technologically-mediated interactions between 
providers and patients ( e.g., text messaging, email, or 
visits by teleconference)  

• Determining appropriate approaches to stimulating 
system-wide change, exploring ways to coordinate 
between bottom-up integration and top-down 
decomposition  

Meta-Knowledge 
Integration  

• Exploiting synergies within ISyE knowledge derived 
from different sub disciplines  

Research Agenda Items That Support Sustainability 

System Monitoring 
(Knowledge Innovation)  

 

• Identification of best practices for use of ISyE 
knowledge  

• Efficient and pervasive methods of data capture  

• New automatic data collection technologies to 
capture observations from patients and their 
environment ( e.g., sun exposure and food intake) 

• Theories and methods beyond natural language 
processing for the translation of lay person language 
into structured computable data  

• Efficient methods for integrating large amounts of 
data from disparate sources • Adequate integration of 
data collection into workflows in manners which 
ensure data validity while minimizing interference 
with clinical workflows  

• Efficient means of integrating information generated 
from different perspectives ( e.g., different providers, 
patients, administrators)  

• Methods to characterize how the outcomes relate to 
the processes  

System Modeling 
(Knowledge Innovation)  

• Models of trust between patients, providers, and 
technology  

• Models that provide guidance about when 
standardization or customization is necessary  

• Models that appropriately consider the conflicting 
objectives of multiple stakeholders and make system-
optimal recommendations  

• Methods to model the dynamics between micro-
changes (at the provider level) and macro-changes (at 
the market and policy levels)  
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Table 2. 9: Areas of research for ISE in HC (continued) 

Area of Application Description 

System Modification 
(Knowledge Innovation)  

 

• Iterative knowledge development and transfer 
between research and practice  

• Improving translation from mathematical and 
technical languages into lay person terminology  

• Testing of change and implementation theories, and 
exploration of the tension between pushing for the 
application of existing knowledge and trying to 
develop more usable new knowledge  

• Exploring how social network theories can be used to 
trigger and facilitate culture change  

Meta-Knowledge 
Integration  

 

• Characterizing health care challenges  

• Identification of best practices for use of ISyE 
knowledge  

 

 

 

 
Figure 2.9: Interactions required for a learning system in Healthcare9 
 

 

 

 

                                                                 
9 IOM (Institute of Medicine). 2012. Best care at lower cost: The path to continuously learning health care in America. Washington, DC: The 

National Academies Press.  
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The view of the success of lean, in contributing to process improvement, is mixed.  A recent review of the literature 
suggests, based on 177 articles on six sigma and lean, that there is weak evidence that Six sigma and lean improved 
HC quality [66].  Another survey article indicated that, while there is apparent significant benefit from 
implementing a lean process, the rigor of the evaluation was lacking and suggested performing comparative 
studies like that sued in evidence-based medicine (rigorous randomized studies) [67].  So, based on its limited 
review of reviews, it appears that while there is significant anecdotal evidence for the improvements resulting 
from lean in HC, the HC community is still not convinced of its benefits.  
 

Pressures to improve the healthcare operations and the rapidly changing environment, within which healthcare 
operates, is driving all segments of the healthcare industry to focus on how to improve performance.  
Conventional approaches, such as financial analysis to reduce costs, application of lean and other similar principles, 
insertion of new technologies, mergers and acquisitions, and others are being used. The reduction of cost, referred 
to here, is defined as reduction of the systems level cost of providing the actual healthcare service.  Simply put, it is 
reducing the cost of the bill for providing a service. 

 

There are thousands of journal papers on the implementation of Lean/six sigma in HC. The effort here is not to 
provide a comprehensive evaluation of these, but rather to gain an understanding of what the lean /six sigma 
approaches might benefit from in order to improve its implementation and sustainability of the assumedly 
improved outcomes.  At its fundamental level, HC is not different than other service industries; generalizing more 
it is the same as other complex sectors as noted previously.  An article in the Wall Street Journal documents the 
outcome of over 100 improvement events, half of which failed over time.  The causes for the failures were 
generally attributed to the hysteresis of the system (i.e. old habits die hard, people slipped back to their old way of 
doing things after the boss stopped watching) and also the response of the system to the increasing pressures 
induced by the change to the point of failure.  Once the drive to improve is removed, the system goes back to near 
its original steady state [68].  One reason for this could be the lack of adequate metrics and the ability to easily and 
frequently measure the intended performance.  While it might be straightforward to measure the output of 
manufactured items and set objective evaluation criteria for measuring quality, it is much more difficult to do the 
same for human performance related to how they perform in a HC setting.  That said, the integration of data from 
multiple data sources, such as EMR and RTLS, might provide some support in this area. 

 

Lean has been considered as a means to improve medication administration safety. The overall outcome, when 
implementing lean, appears to be positive with a significant reduction in the number of errors as measured by 
safety violations [69].  General quality improvements, including reduction of medication errors, have also been 
noted [70]. That being said, the longer-term benefits of lean are still uncertain with effective recidivism, flipping 
back to old methods, and reducing longer term benefits of lean implementation [66].  This again argues for taking a 
systems level perspective on efforts to reduce MAE. 

 

Another concept of lean is its application to information management.  As noted earlier, among the challenges 
faced by nurses, is the amount of information, including non-essential information, along with difficulty in 
accessing the desired information at the time it is needed.  Applying the principles of lean to information 
management supports the concept of providing the information that is needed at the time it is needed [71].  
Stainback considered the use of lean communication techniques to increase the effectiveness of communication of 
race teams which can be considered similar to medication administration in terms of the high consequence risks, 
dynamic nature and complexity of operations [72]. 

 

Delivering information, or knowledge, at the time it is needed follows the same principles as Just-in-Time (JIT) for 
manufacturing processes.  With the goal of providing the right material to the right people at the right time we 
relieve the dependency on memory or requiring the practitioner to integrate information from multiple disparate 
data sources.  The challenge is to meet the system requirements of meeting the unique needs of the user, 
providing an appropriate interface to convey the information, and integrating the data sources in a meaningful and 
efficient way.[73].  While the consensus is that healthcare suffers from a glut of information, perhaps a more 
appropriate view is that it lacks an appropriate mean to select and search for the right information, cull the 
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currently extraneous information and analyse the available information to support the care giver in decision 
making [74]. 

 

In the context of healthcare, JIT information affords the promise of literally putting the information in the hands of 
the HC provider as they need it.  The truth is that many of the systems actually make it harder, not easier, to do 
their jobs [75].  Electronic Medical records Systems, Medication Administration Records, and virtual displays of 
vital signs have all been sued with limited success and adoption.  They still face the challenge of providing an 
integrated information system that meets the needs of the floor nurse particularly as it relates specifically to 
mediation administration.  The concept of JIT information management in HC is not new; reference to the concept 
and consideration of the promise it holds goes back to the 1990’s [76]. 

 

Knowledge management tools are well established in a variety of other fields such as aerospace, defence, and 
manufacturing.  Their application to HC is relatively recent. Empirical data indicates that healthcare needs a 
personalization approach focusing on using interactive knowledge while other disciplines use somewhat different 
approaches [77]. 

Specific MAE Mitigation Approaches 

Effort to mitigate MAEs can take several forms principally administrative, process and engineered solutions.  
Administrative mitigations would include efforts such as checklists, increased education/training, procedures, 
signage, and decreasing interruptions.  Engineered approaches to decrease MAEs would include medication 
dispensing equipment, bar coding, and Radio Frequency Identification (RFID) tagging.  Process changes to reduce 
MAEs would include lean efforts and systems design changes.  Noted below are the primary areas identified in the 
literature that have been addressed in the literature for the mitigation of medication administration errors. 
 

• Engineered approach MAE mitigation: 
o Bar code medication administration (BCMAR) 
o Medication dispensing equipment 
o Smart IV/Infusion pump 
o eMAR/EMR 
o Radio Frequency Identification tagging 
o Clinical Decision Support Software tools 

 

• Administrative approach MAE mitigation: 
o Training/education 
o Interruption mitigation 
o Improved work environment 
o Check lists 

 

One review of the literature focused on the application of technology to reduce MAEs.  Of the observations, one 
insight matched my perception of reviewing over 100 articles for this question: The research related to measuring 
the effectiveness of using technology to reduce MAEs is generally positive towards their benefits but the evidence 
overall is equivocal.  The majority of studies were not theoretically driven, were limited in breadth of data (i.e. 
used one to several hospitals) and were limited to the quantitative.  The review goes on to report that the majority 
of studies reported the development of workarounds with medication administration that could compromise 
patient safety.  This infers that the technologies from the studies were lacking in their overall benefit and 
introduced conditions for the nurses that prompted them to search for approaches that would make their jobs less 
difficult and avoid the sue of the technology [78]. 

Drug Dispensing Systems 

Unit dose medication dispensing was first used in hospitals in the 1960’s to increase efficiency and decrease MAE. 
A descriptive definition of unit dose is [79]: 
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“those medications which are ordered, packaged, handled, administered and charged in multiples of 
single dose units containing a predetermined amount of drugs or supply sufficient for one regular dose 
application or use… system for preparation and distribution of drug served in a single dose and made 
ready to be consumed once”. 

 

In one study, the potential that unit or patient dose systems can have on reducing missed doses verses 
administration from a ward stock (imprest system10) was evaluated. Four hospitals with similar wards were 
utilised; three used the imprest system, one the unit dose system. Of the three hospitals using the imprest (stock-
based system) 5.7% of total doses were identified as missed. In the one hospital using unit dose approach 4.1% of 
total doses were identified as missed (p<0.005) [80].  The authors noted that hospitals switching from bulk 
medicine ward-based systems to unit dose systems reduced missed doses from 17% to 1.6%. 

 

Similar results were observed in a study in a geriatric facility where a unit dose dispensing system was 
implemented.  The researchers observed a 53% reduction in MAEs.  While the study only considered one facility 
with a small number of observations and a limited patient type (geriatric patients), a considerable decrease in 
errors, including wrong dose and wrong drug, was observed [81]. 

 

In another application, an automated drug dispensing system was installed in four hospitals.  The authors 
evaluated for efficiency and error reduction.  The process was assessed in terms of drug inventory, drug 
distribution, pharmacy staff requirements, missed doses, clinical interventions and nurse satisfaction.  The number 
of pharmaceutical line items available in in-patient care areas was increased by 324% using the controlled storage 
and delivery of the automated system. Over 95% of required items were available at ward level during the trial. 
Pharmacists' time was reduced by 46% and technicians' time was increased by 36%. The overall staff cost 
increased by 2.5%. Missed doses declined from 29% to 24%. The prescription turnaround time for items in Med 
stations was decreased by 88% compared to pharmacy-based dispensing. Dispensing interventions by pharmacists 
increased by 16%. Most nurses (91 %) in the wards preferred the automated system and 54% of nurses in the 
intensive care areas thought the system should be adopted [82]. 

 

While automated dispensing provides increased efficiency in MA, reduction in MAE has not been uniformly 
realized, and some studies have noted increases in errors with some forms of automation.  As might be suspected, 
there is considerable nurse-nurse variability in the error rate between an automated system and conventional unit 
dose.  Interesting unintended consequences have arisen with these machines including increased nurse need 
during busy administration times, removal of doses ahead of time to circumvent waiting and overriding the device 
when a dose was needed quickly.  These issues demonstrate that, as in other industries, new technologies are not 
necessarily a remedy for inadequate or faulty processes or procedures [51, 83].  While there are issues with 
automated drug dispensing systems, the consensus in the literature is that they generally have a beneficial effect 
on MAEs and improve the MA process [55, 84-86] 

Bar Code Readers 

Bar code readers have been employed to help reduce MAEs.  It was estimated that 24% of hospitals in the US have 
adopted bar code scanning technology for medication administration [87].  The bar code readers serve several 
functions during the MA process including patient verification, enhancing access to the EMR system, and validating 
the correct drug.  One general study by Anderson noted that MAEs decreased 59%-70% on individual nursing units 
[88].  However, not all results from use of bar code Medication Admiration (BCMA) are positive.  Numerous studies 
have identified issues resulting in MAEs, including a decrease in critical thinking, bypassing technology, and 
occurrence of new errors [89-91] 
 

                                                                 
10 An imprest system is a form of inventory management where a fixed amount is reserved which after a certain amount of stock is used the 
inventory will be replenished.  It has its roots in financial accounting where an example would be a petty cash system where the cash is used 
until it hits a base limit and then is replenished. 
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A study by Bowers et al proposed that implementing barcode readers for MA would increase real-time medication 
administration documentation, decrease medication administration-related errors, increase Workstation on 
Wheels usage at the bedside for medication administration, and increase use of the electronic medication 
administration record for medication retrieval.  After conducting a pre-post comparative design, they concluded 
that there was an increase in use of the computer on wheels at the bedside, as well as real-time documentation. 
However, they noted that the use of the electronic medication administration record to retrieve medications did 
not increase.  Medication errors showed a slight rate increase after bar-code medication administration was 
introduced [92]. 

 

As with many technology implementations in Healthcare (HC), BCMA was introduced into practice without a 
comprehensive understanding of what the actual impacts would be.  Hassink et al performed a comprehensive 
literature review on the impacts of BCMA on MAE.  In summary, the observations were that the frequency of  

decrease in errors from the pre-BCMA implementation to the post-BCMA implementation ranged from 56.0% to -
20.4% (an increase in MAE rate).  If MAEs related to time errors were excluded, the range changes to 56.9% to -
16.3%.  Two-thirds of the studies in the first category showed a decrease in MAEs and nine-tenths in the second 
category showed a decrease in MAEs.  Of the studies in this review there was a beneficial effect of BCMA on 
decreasing the severity of the MAE.  The review did not observe any increase in nursing efficiency for medication 
delivery [93].   

 

With any type of engineered approach, there is a human interface that will ultimately determine overall 
effectiveness of the solution.  An example of this consideration is a study done by Gooder that evaluated nurses’ 
perceptions of BCMA.  The conclusion of the study was that there was a decrease in the overall satisfaction with 
the medication process after the BCMA system was implemented.  This emphasizes the need for an understanding 
of the overall impact of a system such as BCMA on the actual performance of a process such as MA.[94]. 

 

Song et al evaluated the technology acceptance based on behavioural intentions toward BCMA.  The study 
considered nurse feedback and communications which had a positive impact, not the use of the technology; 
increasing age of the nurse had a negative correlation.  The degree of teamwork within the nursing unit and 
perceived usefulness of the technology also contributed to the adoption of the technology [95].  A corroborating 
study by Holden considered the effects pre- and post-BCMA implementation at a hospital: he used a second similar 
hospital that was not implementing BCMA as a control.  Holden summarized the results as follows [96]: 

 

“Nurses' perceptions of the administration process changed at the hospital that implemented BCMA, 
whereas perceptions of nurses at the control hospital did not. BCMA appeared to improve the safety of 
the processes of matching medications to the medication administration record and checking patient 
identification. The accuracy, usefulness, and consistency of checking patient identification improved as 
well. In contrast, nurses' perceptions of the usefulness, time efficiency, and ease of the documentation 
process decreased post-BCMA. Discussion of survey findings is supplemented by observations and 
interviews at the hospital that implemented BCMA.” 

 

PubMed identified 127 possible relevant citations; Scopus identified 136 for the application of bar coding to 
medication administration.  Not surprisingly there is significant overlap between the two data bases.  The 
conclusions to be drawn from reviewing these studies can be summarized as [97-100]: 

• BCMA has a generally positive effect on MAE 

• The severity of MAE is generally decreased by BCMA 

• Human factors considerations play an important role in the use and benefit of BCMA 

• BCMA does not appear to have a negative effect on process efficiency 

• BCMA has a mixed effect on decreasing errors among the “5 rights” of MA 

• BCMA is not a comprehensive solution for the reduction of MAEs 
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As with any engineered solution, end-users will develop workarounds if they find the use of the technology or 
solution cumbersome or problematic.  Koppel et al studied workarounds to the use of barcode medication 
administration systems.  The authors identified 15 types of workarounds including affixing patient identification 
barcodes to the computer cars, doorjambs, scanners or delivering “pre-scanned” medications to patients.  The 
causes driving the nurses to work around the barcoding were varied but generally included issues related to bad 
patient or medication barcodes or equipment issues [90].  The implication of this study is that any technology that 
might be used for the mitigation of MAEs must be simple, convenient and robust. 

Electronic Medication Administration Record 

Use of electronic medical records systems (EMR), including electronic medicine administration records (eMAR), 
have been in various stages of implementation for several decades.  The use of these systems is being driven now 
by mandate of the US Government to implement these systems and be able to demonstrate meaningful use by 
2014 [101].  eMARs are typically included in EMRs by hospitals in an attempt to provide comprehensive patient 
charting and are under the impression that this reduces MAEs.  One study that considered the effectiveness of 
eMARs in mitigation MAEs in combination with other technologies concluded that they are in fact beneficial in 
reducing errors [102].   
 

Another before and after study considered the implementation of eMAR but considering both performance and 
cost implications.  The researchers in this study observed an overall increase in patient safety and timeliness of 
care noting a remarkable total elimination of prescription transcription errors, and modest to slight reduction in 
cost of services.  The authors did not appear to control the effect of other activities that might have been occurring 
that could have affected costs nor was there any type of control group noted [103]. 

 

A more comprehensive study was performed, Appari et al, where they conducted a retrospective cross-sectional 
analysis of data from three Federal healthcare Information Technology database sources Computerized Physician 
Order Entry (CPOE)/eMAR usage from HIMSS Analytics, medication quality scores from CMS Hospital Compare, 
and hospital characteristics from CMS Acute Inpatient Prospective Payment System). They concluded that the 
implementation and duration of use of eMARs are associated with improved adherence to medication guidelines 
at US hospitals thus indicating reduction of MAEs. The benefits are evident for adoption of eMAR systems alone 
and in combination with CPOE [104]. 

 

A primary medication delivery mechanism is via intravenous (IV) infusion.  The HC industry has developed IV 
pumps as an approach to provide consistent medication delivery.  MAE associated with IV pumps occur frequently, 
have the potential to cause injury, and are diverse. Smart pumps are an important component of a hospital’s 
medication delivery system. However, while envisioned to be a means to mitigate MAE, the incidence of error is 
high.  In one study 66.9% of observed medication deliveries using smart pumps had errors associated with their 
delivery.  Currently available smart pumps will fail to generate meaningful improvements in patient safety until 
they can be interfaced with other systems such as the electronic medical record, computerized prescriber order 
entry, bar coded medication administration systems, and pharmacy information systems. Future research should 
focus on the effectiveness of new technology in preventing latent and active errors, and on new types of error that 
any technology can introduce [105-107].  

Radio Frequency Identification  

Radio Frequency Identification (RFID) technology is ubiquitous in a wide variety of industries for the tracking and 
logging of items.  One long-discussed application is the use of RFID in HC and in particular MA [108].  There are 
numerous studies that have assessed the impact of RFID on MAEs:  the virtually universal conclusion is that RFID is 
effective in reducing the occurrence of MAEs, particularly when included as part of an overall dedication delivery 
control and monitoring system [109-112]. 
 

One can envision what could, in effect, be an error-proof medication delivery system based on RFID and eMAR, 
EMR, barcoding and wireless telemetry.  RFID would be used to track the medication and the dosage, its delivery, 
identify the patient, identify the nurse delivering it to the patient, ensuring that the patient and nurse are in the 
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correct room, and verifying the time of delivery.  The issue with RFID is not the potential benefit of the technology, 
rather it is with the prohibitive cost, infrastructure requirements, potential liability concerns, privacy concerns, 
user and patient reluctance and cost and effort to fully integrate and maintain the system [113-116]. 

Clinical Decision Support Software tools 

The Just-in-Time (JIT) delivery of medical information for health professionals is being revolutionized through the 
use of mobile computing apps.  While software programs exist as part of a hospital’s enterprise level Electronic 
Medical Record system, including clinical decision support systems that help manage portions of the MA process, 
they are limited in their utility because they are typically tied directly to the computer stations and are still 
considered to be in their early stages of deployment despite being around for several decades.  These systems are 
noted to be cumbersome and problematic to use with mixed reports on their benefits [117, 118].   

 

A clinical decision support tool is an application that provides information to a clinician that assists in taking action 
or making judgment in support of the care of a patient.  There are a large number of clinical decision support tools 
(CDST) with a broad range of complexity, functions and applications.  While they have found some use in 
healthcare settings, their use is not as ubiquitous as you would find in other settings, such as finance and 
manufacturing.  For healthcare, the range of CDSTs ranges from relatively simple smartphone applications that 
include checklists, reminders, calculators or information sources (e.g. epocrates®) to complex, robust systems that 
provide extensive knowledge processing and artificial intelligence integration into the decision making process 
(e.g. IBM Watson®)11 

 

While there are chronic issues with implementation of EMRs, they offer direct benefits for application of decision 
support tools.  Various CDST applications have been developed for medication administration.  Research related to 
those CDST have concluded benefits arising from their use, notably improving workflow, improving patient safety, 
as well as more attention to alerts, and less impact from interruption [119-121]. 

 

The evolution of mobile computing using tablets, smartphones or similar devices is creating a dynamic 
environment for the creation of apps12 for healthcare professionals.  The area of interest for this study, medication 
administration, has a relatively limited number of applications.  Apps in this area have the same challenges as apps 
for other areas of healthcare, specifically: uncertain regulatory framework, liability concerns, accuracy and 
performance validation, providing current information, standardization, and cybersecurity [122-124]. 

 

There are relatively few apps developed for medication administration.  As of this writing, only a modest number 
of apps specifically for medication administration were identified as commercially available apps for small mobile 
computing devices: 

Micromedex13 

Medhost14 

PatientTouch15 

Medrills16 

Allscripts17 

 

 

 

                                                                 
11 Extracted from a portion of the answer to Comprehensive Examination question 1 from Dr. Tami Hodges and developed by T. A. Berg.  The 
complete answer can be provided upon request. 
12 Apps refers to software programs developed for use on mobile computing devices that are self-contained programs usually designed to 
address a particular need or set of needs. 
13 iTunes app aligned with larger healthcare management software 
14 iTunes app aligned with larger healthcare management software 
15 iTunes app aligned with larger healthcare management software 
16 iTunes app aligned with training software 
17 iTunes app aligned with larger pharmacy management software 

https://online.epocrates.com/rxmain
https://www.ibm.com/watson/health/
http://micromedex.com/
http://www.medhost.com/about-us
http://www.patientsafesolutions.com/patienttouch-clinical-communications
http://www.medrills.com/
http://www.allscripts.com/
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Other of apps are available that provide comprehensive drug information including: 

Epocrates 

Merck Manual 

A2ZDrugs 

iPharmacy 

WebMD 

Davis’s Drug Guide 

 

The apps noted above could include general medication reference, dose calculation, contraindications, drug 
interactions, etc.  They do not include decision support tools that guide practitioners through the medication 
administration process. 

 

The question can be asked: do apps actually provide a benefit in the form of improved patient safety and more 
specifically a reduction in MAEs?  The best, but unfulfilling answer is that it depends.  Most of the research on the 
uses and benefits of mobile apps is anecdotal or the research is not based on controlled studies which weakens the 
described benefits [125]. 

 

Mobile apps provide benefit for health care providers (HCP) mostly by providing information at point-of care 
(POC).  Improving access to tools at POC is recognized as improving patient outcomes [126-128].  As noted 
previously, there are a wide range of apps that support HCPs including [129]: 

o Information and time management 
o Health record access and maintenance 
o Communication and consulting 
o Reference and information gathering 

▪ Literature search 
▪ Drug information 
▪ Physiology and test values 

o Calculators and support aids 

• Patient management 
o Clinical decision-making support 
o Patient monitoring 

• Medical education and training 
 

The benefits associated with mobile app tools for HCP include convenience, decision making support, reduction of 
errors, enhanced communication between the provider and patient, and increases in efficiency and productivity 
[129-132].   

 

At the time of this writing no mobile apps have been identified that are designed specifically to support the 
administration of medications and having the intent of improving patient safety and reducing the occurrence of 
medication administration errors. 

Education/Training 

The level of training and education has been evaluated as a potential influence on the occurrence of MAEs, 
particularly with regard to medication calculation and pharmacology.  In an overarching review, the effectiveness 
of a range of training and education programs focused on medication administration were examined.  The results 
of these programs provided mixed results: it was found that while these programs increased general knowledge, 
they did not translate directly into the reduction of MAEs.  The study goes on to report that more hands-on 
training through simulation-based approaches and multifaceted approaches that involved combinations of risk 
management strategies and education, resulted in some decrease in MAE occurrence [133]. 
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Using nurses trained specifically in the MA process and using them as a dedicated resource to administer 
medications is one approach that has been considered to lower MAEs.  Greengold et al conducted a randomized 
trial to assess the use of medication nurses to administer medications to mitigate MAEs [134].  Her conclusion was 
that there was no statistically significant value in using dedicated medication nurses over the control group.   It 
should be noted that this was a limited study using two hospitals and 16 nurses in total. 

Interruptions Reduction 

An area of interest to mitigate MAEs is to reduce interruptions of nurses while going through the MA process. 
Numerous studies have been done to associate interruptions with an increase in MAEs [29, 39, 53, 135-137].  A 
variety of studies have been performed to evaluate the impact of interruption mitigation methods [138-141].   
While interruptions and other distractions are well recognized as sources of error within healthcare, as well as 
other high consequence, the literature for healthcare in the effect or benefit of interruption mitigation efforts is 
mixed. 
 

In a systematic survey of ten studies, Raban et al concluded that there is weak evidence on the effectiveness of 
interventions to reduce the effect of interruption on the rate of MAEs.  They concluded that while there is modest 
indication of the reduction of errors, that other interventions were also used and that no controlled studies were 
performed to ensure the effectiveness of interruption mitigation techniques.  As with other MAE mitigation 
techniques, the authors commented that more research is required to better understand the complex integrated 
system of MA and the effect of these methods [142].  This was also supported by O’Shea in a similar review of 
available research [138, 140, 143].  

Improve Work Environment 

It is often reported that work conditions, such was shift length, stress, and overwork, can lead to increased MAEs 
[4, 50, 144].  Lessons learned from other industries have been explored from other industries such as airline, 
nuclear, chemical operations and other high consequence operations [145-147].  
 

Nurse workload continues to be an ongoing area for debate: for the purposes of this review, workload is used as a 
general topic area covering areas including stress, fatigue, burnout, etc.  While one could argue that this is not 
entirely accurate, the literature generally groups these areas.  On one hand the literature clearly relates high 
workload and its corollary element, fatigue, as a direct cause of decreased patient safety and increased MAEs [29, 
144, 148-151].  This risk is offset by the real-world issue of higher costs associated with increased nurse staffing 
levels: note that the correlation of increased nurse staffing levels and increased patient safety is well documented 
[152-157].  The most relevant comment on this topic came from an interview conducted with the Dean of the 
College of Nursing at the University of Tennessee-Knoxville, Dr. Niederhauser.  Dr. Niederhauser stated “the 
primary reason someone goes to the hospital is for professional nursing care”. 

 

Included in the discussion of the work environment is the level of education of the nurses.  Similar to reduced 
workload, increased nursing education, particularly baccalaureate and advanced practice nursing education, 
contributes directly to improved patient outcomes and a decrease in MAEs [158-161]. 

 

While a straightforward solution to address medication errors would be increased staff levels, better scheduling 
and better educated nurses, the economics of healthcare would generally not support this.  Hospitals are driven to 
lower staffing levels, including registered nurses, in order to address financial challenges [162].  Healthcare has 
used various industrial engineering tools to help mitigate the balance of the need for improved scheduling and 
increased staffing levels by applying various scheduling and staff balancing techniques [163-165]. 

 

The disconnect between the desire to improve product quality (in the case of healthcare this means increasing 
patient safety and improved outcomes) and the drive to reduce costs is not unique to healthcare.  What is unique 
to healthcare has been the resistance to drive change forward including or especially engaging technologies that 
can augment performance such as using just-in-time information. 
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Checklists 

Seemingly mundane and simplistic, checklists seem to be an obvious solution to address some of the more typical 
oversights that cause MAEs.  In his book, The Checklist Manifesto, Atul Gawande takes the concept of checklists, 
particularly in healthcare, and describes how in this increasingly complex field it is too easy to miss a step that 
results in some form of error.  Checklists, either in the form of computer base instruction or hand-written notes, 
are recognized as successful in reducing MAEs [135, 166, 167].  Studies corroborating this cover various forms of 
checklist implementation.  In one instance, simple checklists were effective in reducing pump programming errors 
for oncology treatments between 38%-55% [168, 169]. 

Human factors/Cognitive Engineering and Systems Engineering for MAE 

Human factors engineering (HFE), which also includes usability engineering, cognitive engineering (CE) or user-
interface engineering, integrates the areas of psychology, ergonomics, human dynamics, man-machine interface 
and engineering [170].  Systems engineering (SE) is a multidisciplinary approach to applying engineering principles 
to the operation of the integrated composite of people, products and process that provide a capability to satisfy a 
stated need or objective (aka a system) [171]. 
 

Human factor and systems engineering have enjoyed application to healthcare as a means to improve operations 
and ensure the wellbeing of patients and providers.  The application of these disciplines is somewhat more limited 
in the study of MAEs. 

 

While not at the core of this research, HFE studies on CPOE have demonstrated the benefits of considering HFE 
and SE issues as part of the protocol in designing or assessing these systems.  One study assessed the project 
lifecycle of a CPOE in the re-engineering of the system and was reported as a case study.  Various issues and 
potential solutions were identified, which resulted in a redesign of the system to increase patient safety and 
human performance [172].  

 

Another HE study on CPOEs identified 22 types of medication errors associated with CPOE systems including 
double dosing, incompatible orders, generating wrong orders and missing contraindications due to a lack of 
integration with other systems.  This study considered the cognitive engineering aspects of CPOEs and noted the 
causes of errors as 1) information errors generated by information fragmentation errors leading to a lack of 
information and 2) human-machine interface flaws reflecting rules that do not correspond with work processes 
[173].  A similar study by Wettemeck had similar conclusions [174]. These same factors would clearly hold true for 
nurses as well as physicians.   

 

It has been noted that EMRs and CPOE systems have had unintended impacts on nurse-physician interaction [6, 
175, 176].  This phenomenon is a multifactor issue including work behaviours, work polices and software design.  A 
HE/SE evaluation that effectively evaluates an often overlooked and underestimated key factor could conceivable 
have identified and defined solution options for this issue.   

 

A limited amount of research has been done on HFE and SE specifically related to the physical distribution portion 
of the medication administration process.  Some effort has gone into the understanding of causes of MAE as noted 
earlier. At the risk of repetition these are [177-180]: 

• Stress 

• Workload 

• Fatigue 

• Emotional/cognitive issues 

• Interruption/working conditions 

• Slips 

• Lapses 

• Education/Training 

• Rule violations 
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• Poor communication 

• Lack of critical thinking 

• Poor equipment design 
 

Various studies have been done on attempts to find HFE/SE insight on potential solutions to these factors.  While 
not comprehensive the following table provides a representative listing of the research I the field (Table 2.10). 

 

At its core, healthcare is a service industry with human interface being the overriding method of work execution.  
This includes provider-provider, provider-patient, provider-equipment, provider-computer, provider-organization 
interactions along with all of the other permutations and combinations.  With humans as the key element of the 
healthcare system, it is curious that healthcare has found relatively little use for HFE including cognitive 
engineering in medication administration. 

 

Some applications of HFE/CE that have an effect on MAE have already been explored in this review including bar 
coding, work interruptions, medication infusion equipment, MAR software, and computerized order entry. One 
application of HFE/CE is on the naming, labelling and packing of medication.  One study reports that up to 25% of 
medication errors are a result of name confusion errors, and 33% are a result of packaging or label confusion.  The 
US Federal Drug Administration and US Pharmacopeia provide direction naming conventions, labelling and naming.  
However, these guidelines have not lead to an elimination of errors.  In this paper, Berman provides a set of 
guidelines which could reduce the incidence of MAEs, however does not provide studies to back up her 
suppositions [211]. Other industries have considered the use of CE and HFE for these purposes and could be 
applied to healthcare.  While changing labelling, names and using text size, font and packaging colour differences 
can be beneficial, it can also result in unintended consequences and errors as well [212].  Also confounding this 
area are the restrictions placed on changes to packing, naming and labelling by the regulatory agencies.  Clearly 
this area is a source for future research support in HFE/CE. 

 

Another paper provides an interesting insight on the effect of package design on accuracy recognition for 
medications.  In this study the research evaluated the error incidence of the standard medication packaging 
against packaging that was designed with modified colours, text form and size, and emphasis of medication type.  
The redesigned packages lowered the incidence of error by a factor of five [213].  Appendix 9 provides a depiction 
of the similarity of drug packaging that could lead to MAE based on the similarity of packaging resulting in 
providing the wrong medication to a patient.   
 

 

Table 2. 10: Listing of reviewed literature HFE/CE and SE 

MAE Error Factor Citation 

Workload [181-184] 

Fatigue [185, 186] 

Emotional/cognitive issues [187-189] 

Interruption/working conditions [40, 146, 190-194] 

Slips/Lapses [195-197] 

Education/Training [42, 154, 198, 199] 

Rule violations [34, 200] 

Poor communication [201-203] 

Lack of critical thinking [204-207] 

Poor equipment design [208-210]  
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Decision Support Tools 

This question actually poses two thoughts.  First is the consideration of the recent research contributing to the 
advance or understanding of Point of Care (POC) Clinical Decision Support Tools (CDST) and in considering this 
information, how it will impact consideration of my future research related to POCCDSTs.  This is decoupled but 
relates directly to the second part of the questions which considers the temporality of the information. 

Clinical decision support systems (CDSSs) provide clinicians, staff, patients or other individuals with knowledge and 
person-specific information, intelligently filtered and presented at appropriate times, to enhance health and health 
care. CDS encompasses a variety of tools to enhance decision-making in the clinical workflow. These tools include 
computerized alerts and reminders to care providers and patients; clinical guidelines; condition-specific order sets; 
focused patient data reports and summaries; documentation templates; diagnostic support, and contextually 
relevant reference information, among other tools. 
CDSSs have a number of important benefits, including: 

• Increased quality of care and enhanced health outcomes 

• Avoidance of errors and adverse events 

• Improved efficiency, cost-benefit, as well as provider and patient satisfaction 

A CDS is a sophisticated health IT component. It requires computable biomedical knowledge, person-specific data, 
and a reasoning or inferencing mechanism that combines knowledge and data to generate and present helpful 
information to clinicians as care is being delivered. This information must be filtered, organized and presented in a 
way that supports the current workflow, allowing the user to make an informed decision quickly and take action. 
Different types of CDS may be used for different processes of care in different settings. 

Health information technologies designed to improve clinical decision making are particularly attractive for their 
ability to address the growing information overload clinicians face, and to provide a platform for integrating 
evidence-based knowledge into care delivery. The majority of CDS applications operate as components of 
comprehensive EHR systems, although stand-alone CDS systems are also used. 

While POCDST applications are unique in terms of setting and specific application, the science and theory behind 
them are similar to decision support tools (DST) in general (i.e. covering all aspects of their application).  The 
research on DSTs is extensive and varied. Their development and application go back decades, preceding the 
advent of artificial intelligence starting with the use of operations research and statistical modeling during WWII to 
support logistics (now called supply chain), troop movements and submarine hunting [214].  The complexity of 
operational decisions requires a systematic approach to decision making, which can sift through numerous 
(interacting) options, trading off multiple (quantitative and qualitative) objectives, incorporating conflicting inputs, 
helping to minimize the impact of distractions and non-value-added information, while minimizing risks and 
handling huge amounts of data. Such decisions can greatly benefit from state-of-the-art decision support tools.  

Decision support tools found wide adoption, primarily in the area of manufacturing, to improve operations and 
productivity.  As computing capabilities, the applications of computer-based decision support found more varied 
applications, growing rapidly from the 1960s.  Decision making tools of all types have found their way into finance, 
tourism, entertainment, transportation, sports, etc. [215]. 

These varied applications and the related research serve as the foundation for the application of DST in healthcare.  
Wu et. al. reviewed types of decisions and DSTs from a number of areas outside of healthcare and noted 
considerable similarities between the types of decisions that are made, the functions of the associated DSTs as 
well as the factors that influence the performance of DSTs.  They concluded that “complex, high-level decision-
making has common features across disciplines as seemingly disparate as defense, business, and healthcare. 
National efforts to advance the health information technology agenda through broader CDS adoption could benefit 
by applying the DST principles identified in this review” [216]. 



www.manaraa.com

47 
 

A serviceable definition of a decision support tool (DST) is: 

A tool or set of tools that facilitates the use of data, models, and employs a structured decision process to 
help answers question, solve problems and supports or refutes conclusions [217]. 

For this discussion no distinction will be made between a decision support system and a decision support tool.  
While one could make a conceptual distinction of a decision support “tool” as having specific or limited application 
focused on providing support in a narrow area and a decision support “system” as having broad application 
covering a variety of areas, the literature does not seem to make a clear distinction bin the use of “system” or 
“tool”.  For our purposes the terms will be used interchangeably. 

CDSTs are a natural extension and subset of DSTs.  HealthIT.gov defines a CDST as: 

…a system that provides clinicians, staff, patients or other individuals with knowledge and person-specific 
information, intelligently filtered or presented at appropriate times, to enhance health and health care. 
CDS encompasses a variety of tools to enhance decision-making in the clinical workflow [218]. 
 

POCCDSTs are a subset of CDSTs.  While the application of POCCDST is narrower, the elements are the same as the 
overarching DSTs. These basic elements and their interaction are highlighted in Figure 2.10.  When adding the 
concept of POC the focus is on those tools used by the clinician immediately during or proximate to an encounter 
with a patient. Adding the feature of POC application to CDSTs creates extra demands for the tool’s functionality 
including enhanced ease of use, succinctness of information, integration into user workflow, and collection of 
information from various sources and provide in an integrated and appropriately processes fashion. 

With the state of the science of DSTs being the superset including CDSTs, the domain of DSTs will be considered in 
reviewing the state of the elements of science to contributing to progress in POCCSTs.  An important element of 
POCCDST is the need to have the information from the CDST provided in near real-time which emphasizes the 
aspects of human-computer interface, cognitive engineering, mobile computing, and mobile healthcare. 
State of the Science of Just in Time (JIT) Point of Care Clinic Decision Support Tools (POCCDSTs) 
At its essence this research is exploring how JIT information might influence decision making with the hopes of 
decreasing the rate of error in the MAE process.  JIT information must be delivered through some mechanism, in 
this approach a simple POCCDST will be used to provide the information to the research subjects.  There is a 
considerable corpus of research on POCCDSTs and a vast array of POCCDSTs that have been developed many of 
which are used in clinical practice.   
 

Figure 2.10: Clinical decision support tools are a subset of the family of decision support systems 
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A clinical decision support tool is an application that provides information to a clinician that assists in taking action 
or making judgment in support of the care of a patient.  There are a large number of clinical decision support tools 
(CDST) with a broad range of complexity, functions and applications.  While they have found some use in 
healthcare settings their use is not as ubiquitous as you would find in other settings such as finance and 
manufacturing.  For healthcare the range of CDSTs ranges from relatively simple smartphone applications that 
include checklists, reminders, calculators or information sources (e.g. epocrates®) to complex, robust systems that 
provide extensive knowledge processing and artificial intelligence integration into the decision making process 
(e.g. IBM Watson®). 
 
The dawn of CDST is reported to have started in the 1960s with commercial application occurring in the early to 
mid-1990’s [219-221]. CDSTs take on a wide variety of forms, applications and levels of complexity ranging from 
disease specific applications (e.g. cancer), application specific (e.g. medication administration) to general use 
decision making tools.  As the robustness and complexity of CDSTs increases, so do the challenges of their 
implementation, operation, maintenance and utility for the end-user.   
 
The need and resulting desire for CDSTs is clear.  The complexity of delivering efficient and error free care that 
engages evidenced based medicine is overwhelming.  The belief is that using CDSTs will improve overall clinical 
performance by providing the clinician with tools that will help process information leading to better decisions and 
outcomes.  Effective CDSTs have the following attributes [222]: 

• speed in processing information, 

• anticipation of user needs and delivery of information in real-time (aka Just-in-time information), 

• ease of use, 

• fit with the user workflow and other information systems, 

• limit required input from the end-user to a minimum, 

• simple man-machine interface (e.g. ease of switching between screens and limited information per 
screen), 

• information is current and correct. 

A fundamental part of the evaluation of testing a new drug is to validate that it is efficacious.   Similarly, a first step 
in considering POCDSTs is to perform the same assessment and answering the question: do CDST improve clinical 
practice and what are the critical features that contribute to performance?   A review conducted by Kawamoto 
demonstrated that CDSTs significantly improved clinical practice in 68% of randomized control trial performed on 
individual CDSTs.  Four features were identified as contributing to improved clinical practice: automatic provision 
of decision support as part of clinician workflow, provision of recommendations rather than just assessments, 
provision of decision support at the time and location of decision making, and computer-based decision support.  
Of the systems with all four features that were evaluated, 94% significantly improved clinical practice [223]. 

Clinical Decision Support Tool Structure 

A Clinical Decision Support Tool (CDST) can be thought of as having two basic components.  One is the part that 
interacts with the user, referred to as the user interface (UI).  The other component can be considered the 
Decision Engine, it is the set of algorithms, data, and behind the scenes processing that takes the queries from the 
UI, processes them and then provides the desired information to the user via the UI.  The basic architecture of 
PCDST provides a structure on how to parse the functional elements relevant to PCDST.  The key elements for our 
discussion here are the cognitive elements related to the user interface, the user interface itself, the knowledge 
base and the decision engine.  The other elements like the use of cloud computing and interfacing to the data are 
certainly important, but not directly germane to the science areas of interest. 
 
The need and resulting desire for CDSTs is clear.  The complexity of delivering efficient and error free care that 
engages evidenced based medicine is overwhelming.  The belief is that using CDSTs will improve overall clinical 
performance by providing the clinician with tools that will help process information leading to better decisions and 
outcomes.  Effective CDSTs have the following attributes: 

• Speed in processing information, 

https://online.epocrates.com/rxmain
https://www.ibm.com/watson/health/
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• Anticipation of user needs and delivery of information in real-time (aka Just-in-time information), 

• Ease of use, 

• Fit with the user workflow and other information systems, 

• Limit required input from the end-user to a minimum, 

• Simple Man-machine interface (e.g. ease of switching between screens and limited information per 
screen), 

• Information is current and correct [222]. 

Figure 2.11 provides a simple diagram of a generic decision support system. “Data” refers to any information input 
into the system without regard to its origin including electronic health record, manual input, sensor input, etc.  
“Model” can be considered as the set of algorithms, heuristics or functions that process the inputted information.  
The user interface provides the user the mechanism to input information and access the processed information, a 
typical graphical user interface in a computer-based Decision Support Application.  The Decision Support 
Application is the integration of the three previously mentioned elements to provide the user with the desired 
function(s). 

Figure 2.12 provides an expanded view of the possible interfaces for a CDST[224].  The interfaces and their 
interactions depend on the functions and design of the CDST. Sophisticated CDSTs will be fully integrated with a 
number of databases, will have robust decision engines, will provide multiple functions and will require significant 
computing requirements.  Advanced networking technology, cloud computing and more powerful mobile 
computing platforms allow more advanced POCCDST functionality, notwithstanding the man-machine interface 
and cognitive ergonomic limitations of smaller platforms, as well as the operating environment for PCDSTs. 

The user interface (UI) in Figure 2.12 includes user input, type of platform (e.g. smartphone, laptop, portable 
workstations, etc.), and the UI.  The decision engine combines the logic programming, model, rules or a statistical 
program of the knowledge base with the patient knowledge based data [219, 225].  

A fundamental part of the evaluation of testing a new drug is to validate that it is efficacious.   Similarly, a first step 
in considering POCDSTs is to perform the same assessment and answer the question: do CDST improve clinical 
practice and what are the critical features that contribute to performance?   A review conducted by Kawamoto 
demonstrated that CDSTs significantly improved clinical practice in 68% of randomized control trial performed on  
individual CDSTs.  Four features were identified as contributing to improved clinical practice: automatic provision 
of decision support as part of clinician workflow, provision of recommendations rather than just assessments, 
provision of decision support at the time and location of decision making, and computer-based decision support.  
Of the systems with all four features that were evaluated, 94% significantly improved clinical practice[223]. 
 

 
 

 

 

 

 

 

Figure 2.11: Simple diagram of generic decision support system 

 Data  

 User 
Interface 

Model 

Decision Support 
Application 

 User 



www.manaraa.com

50 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.12: Expanded point of care clinical decision support diagram 

 

POCCDSTs can be applied throughout the medical management cycle to optimize safety and other relevant 
outcomes.  Not surprisingly the 5 rights of medication administration have been duplicated to create the POCCDST 
5 rights noted below [226]. 

• The right information: evidence-based, suitable to guide action, pertinent to the circumstance. 

• To the right person: considering all members of the care team, including clinicians, patients, and their 
caretakers. 

• In the right CDS intervention format: such as an alert, order set, or reference information to answer a 
clinical question. 

• Through the right channel: for example, a clinical information system (CIS) such as an electronic medical 
record (EMR), personal health record (PHR), or a more general channel such as the Internet or a mobile 
device. 

• At the right time in workflow: for example, at the time of decision/action/need. 
 

While these elements are necessary in building an effective POCCDST, they are not necessarily sufficient to ensure 
optimal performance of the system.  Elements that are frequently missed in designing such systems include user 
interface and cognitive ergonomics perspectives that provide the appropriate functionality, compliance with 
procedures, consideration of information security protocols and usability of the tool based on the actual needs of 
the end user.  
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Summary of Decision Engine Research 

CDST’s are divided into two general categories, knowledge-based-systems (KBS) and non-knowledge-based 
systems (NKBS) (Figure 2.13). KBS based CDST’s are in essence expert systems that use rules such as IF-THEN 
statements to process the user input and in combination with the decision engine process, use this input to 
develop the desired output such as suggested actions for the user.  

NKBS use machine learning, a form of artificial intelligence.  As opposed to constructing rules and using expert 
input, this architecture allows the system to find patterns in clinical algorithms or examples of information or learn 
from past experiences. Artificial neural networks and genetic algorithms are examples of this type of system.  This 
duality provides flexibility in their interpretation and provides both the ability to track the decision process and 
incorporation of new data hence is a learning system. 

Extensive research has been done on KBSs.  Rule based expert systems, decision trees, and Bayesian models are 
examples of KBSs.  These types of systems are preferred for clinical implementation because the performance can 
be more accurately validated in contrast to NKBSs that are considered “black-box” having logic trains and 
processing that cannot be as easily traced. 

Bayesian networks employee conditional probability and new knowledge to produce updated output.  A Bayesian 
network can be viewed as both a knowledge based and statistical system.  A Bayesian network can be constructed 
to a system that uses expert input.  Bayesian networks also represent a multivariate probability distribution with 
the assumption of independence. The integration of the domain knowledge from the expert along with the 
statistical framework and ability of Bayesian networks to update themselves usually results in better performing 
systems [227]. 

Rule based systems (RBS) typified by the IF-THEN rule sets were one of the schemes used in the early days of 
expert system development and remains one of the main approaches for design of CDSTs. The standard RBS has 
been modified by adding features that add fuzzy rules.  Genetic algorithms have been used to identify rules in 
addition to using experts [228].   

Conventional Rule Based Systems (RBS) have inherent limitations because of the inflexibility of the rules.  In other 
words, a standard IF-THEN rule does not allow for vagueness or uncertainty. A rule-based inference methodology 
using evidential reasoning (RIMER) for knowledge representation has been developed and applied in CDSTs.  In this 
approach, a set of rules is designed with degrees of belief in all possible consequents of a rule.  This approach is 
capable of capturing incomplete information, vagueness and nonlinear causal relationships [229].  

NKBSs are made up of a variety of tools and approaches.  Artificial neural networks (ANN) have been used 
extensively in CDSTs.  They are used frequently because the developer is not required to understand the 
relationship between the output and input variables.  ANNs are considered a “black box” technique that models 
relationships by learning from historical information, whereas approaches like Bayesian networks require 
adequate domain knowledge including probabilities of occurrence of events.  A comparison of ANN with 
mathematical models was performed on a traumatic brain injury decision support system.  The results suggested 
that ANN may be better at providing decision solutions for complex non-linear CDST than conventional statistical 
techniques [230].  ANN are not used as extensively in direct clinical applications because of their black box nature 
and the logic train of the decisions they provide are not directly traceable. 
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Figure 2.13:  Methodologies for CDST decision engines 

 

Genetic algorithms work by working through possible solutions reiteratively to find the optimal solution which is 
the most fit.  Defining solution fitness is a challenge for genetic algorithms [219].  Genetic algorithms tend to be 
less greedy in processing, which provides global optimal solutions as opposed to locally optimal solutions.  This is 
because genetic algorithms can identify cases using subsets of cases and  consider cases which are influential en-
bloc which may not be influential alone [227].  Genetic algorithm models are used in domains where the existing 
knowledge is difficult to encode, or traditional mathematical models are not appropriate [231, 232]. 

 While many CDST based on ANN and genetic algorithms have been developed, their application is mainly in the 
realm of academic research and not continuous clinical application.  ANN and genetic algorithms are 
computationally expensive for more complex systems and they lack the assurance of more conventional 
knowledge-based systems [219]. 

Cognitive Engineering 

Cognitive engineering (CE) (also called cognitive ergonomics) seeks to understand how people make decisions in 
real settings and is an important element of decision support tools.  Included in this domain are the ways in which 
people perceive and then process information under varying conditions such as time stress, high risk, group 
settings, organizational influences, etc.  It is considered part of human factors as part of industrial and systems 
engineering disciplines.  CE integrates aspects of cognitive and behavioral science, human factors, human-
computer interaction, psychomotor response, and systems engineering. 
 
Human factors cognitive engineering has focused on the psychomotor and perceptual aspects of how humans 
receive and process information or interact with their environment.  More recent work begins to develop the 
understanding of how information is processed and understood in the context of how it is presented with respect 
to the overall system.  This research is providing an understanding of what is needed to design DSTs.  This is 
particularly relevant to healthcare and its dynamic decision-making environment.   This research is providing 
answers to why cognitive behaviors occur including what causes errors/mistakes, how information is interpreted 
and processed, propensity to use DSTs, how DSTs can best support critical thinking, human processing of 
information from multiple disparate data sources, as well as optimizing decision performance in complex 
environments (interruptions, high cognitive work load, stressful, time critical, etc.) [233, 234].   
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Kushniruk has explored the analysis of complex decision-making processes in health care with regard to applying 
cognitive approaches to health informatics.  To summarize this exploration, an improved understanding of 
cognition is essential for evaluating the effects of CDSTs and for improving them. Decision making, and as a result 
the effectiveness of decision making tools are influenced both by the individual and the environment: a novice in a 
high stress environment working with ill-defined information will engage a decision-making tool in a different way 
than an expert with well-defined information in a routine environment.  Decision performance can be complicated 
by a dynamic environment which includes interruptions and shifting requirements.  A CDST will be more effective if 
its design incorporates consideration on how the user will perceive, understand and act on the information 
provided by the system.[235].   

Providing support in decision making (DM) is a primary function of POCCDST.  The study of DM is integral to 
cognitive engineering.  There are three perspectives of research in DM: psychological, normative and cognitive 
[236-238].  The cognitive aspects consider DM as a continuous process integrated with interaction with the 
environment.  The psychological perspective considers decisions in the context of values, preferences and needs 
that the individual needs or has.  Research in the realm of normative assessment analysis DM based on logic and 
rationality in the DM process.  Each perspective has an extensive body of research supporting it and can play a role 
in the design of an effective POCCDST. 

How someone makes decisions can change as the environment they are operating in changes.  For example, logical 
decision making where the decision maker uses their knowledge to assess the situation, evaluate options and 
make rational choices based on this information would be an approach used in medical decision making when the 
environment is not stressful.  However, as the situation changes to one with higher time pressure, more 
interruptions, greater ambiguity and more interruptions, the decision maker likely shifts to intuitive decision 
making using prior experience and simple heuristics to make decisions. Understanding this dynamic, the design of 
a POCCDST can accommodate this change or fill the gaps in judgment inherent to each DM approach [234, 239-
242]. 

The question directly impacting this research is the construction of a CDST that provides the appropriate 
information needed by the user in a fashion that is understood.  Adding POC into the construct of cognitive 
ergonomics for CDST increases the pressure to provide information tailored in a way that enhances understanding 
and supports decision making or task execution in a focused area in a timely fashion. The cognitive engineering 
aspects at play are:  

• data visualization – how the data is presented in a form that is most meaningful, and 

• knowledge representation – integration and presentation of information that is most meaningful. 
 

Extensive literature exists on the psychomotor aspects of human-computer interface.  Elements such as eye 
tracking, font size, color highlights, dynamic emphasis (e.g. flashing text, popups), physical user interface (e.g. 
touchscreen, screen size, mobile vs. portable), screen swiping, etc., have been studied extensively.  While 
considerable research exists on how these types of factors effects usability and understanding of computer 
applications, much less work has been done on how this might specifically affect POCDSSTs. While many of the 
tools from human computer interface (HCI) are applicable, lessons learned from recent research indicates that it is 
also likely domain dependent. 

Human-Computer Interface 

If a POCCDST uses a computing device, an important consideration in the design and application of the technology 
is the design and functionality of the interaction between the human and the device and associated software.  
Human-computer interaction (HCI) is an area of research and practice that emerged in the early 1980s, initially as a 
specialty area in computer science embracing cognitive science and human factors engineering (Figure 2.14). 
 
While HCI is a broad field, our interests are focused on how to improve the physical interface between the POCDST 
user and the backend system providing the information.  Computers in a clinical setting include various form 
factors and physical user interfaces ranging from stationary workstations to “computers on wheels” transportable 
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works stations to truly mobile platforms including laptops and hand-held devices.  The form factor of the computer 
plays a role in its usability for different purposes.  A workstation with a larger screen and keyboard offers easier 
input for notes and charting purposes, as well as easier reading of large documents or detailed data. Whereas, a 
smartphone provides easy portability and quick reference to summary level information and the ability to respond 
quickly to alerts and just-in-time information but the smaller screen size limits the its functionality for some 
applications [243, 244]. 
 
The user interface (UI) defines how the user interacts with the system and is paramount in determining the 
effectiveness of the system’s usability.  This is particularly true for smaller form factor computing devices such as 
smartphones.  Many factors influence the user interface experience.  For example, smaller screen devices impose 
more difficulties for children and middle-aged or older adults who were sensitive to cognitive demands imposed by 
current smartphone GUI designs [245]. 
 
Extensive research exists on graphic user interface (GUI) including layout, font, color active graphics, data entry, 
etc. [246, 247].  A number of studies have investigated text-based approaches versus GUIs for computerized order 
entry.  The general results indicated that GUIS increased accuracy and were more efficient than text based entry 
[248, 249]. 
 
 
 

 
Figure 2.14: Interaction of elements influencing human-computer interface18 

 

                                                                 
18Images included under title 17 section 107 U.S. Copyright Law Fair Use Doctrine as educational material distributed for use without profit. 
Sources: http://www.kickerstudio.com/blog/page/34/ 
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Developing an interface that provides an appropriate user experience that accommodates both the challenges of 
the environment and meets the ergonomic criteria for the target population of users is challenging.  The interface 
will ideally be intuitive, simple, match the workflow, be compliant with procedures, and provide ease of input as 
well as readability.  Consideration could be given to haptic feedback to augment other types of notifications.  End 
user testing and evaluation of the GUI, while it is in development, is an important step of the GUI design.   Physical 
considerations such as infection control, physical handling of the device, patient perception, durability and other 
factors. 

Mobile Computing 

POCCDST requires a dynamic interface and the ability to provide a number of simultaneous interfaces principally 
between the user and the information resource but also the user and the patient.  Optimally, the interface and the 
information exchange must be in real time.  Ideally the information content will provide the correct information in 
the right form in the correct amount to allow easy interpretation.  Mobile information communication 
technologies (MICTs) have considerable promise in patient care settings. That promise can only be realized if the 
MICT applications are used by the medical staff. This paper reports on a study examining nurses' decisions to 
utilize MICTs. A mixed-methods approach is used, consisting of both qualitative and quantitative elements, that 
reveals and empirically tests the significance of novel constellations of fit (i.e., identification, information, patient 
interaction, physical, time criticality, user comfort, and workflow fit) and individual characteristics, presented as 
basic human drives (i.e., drive to acquire, bond, defend, and learn). Findings indicate that fit is a multi-faceted 
construct and that archetypical human drives have an influence on these various notions, which in turn, impact 
technology adoption in the healthcare context.[250] 
 
The potential for handheld devices to support healthcare providers is well recognized [251-253]. Point of care 
clinical support systems targeting bedside nurses have positive effects on outcomes and hold promise for 
improving care quality; however, this research is lagging behind studies of CDS targeting medical decision-making 
in both volume and level of evidence [254]. 
 
Interestingly, no research has been found related to the ideal features for mobile computing devices in healthcare 
and how these would influence adoption of mobile devices for use in healthcare.  These considerations might 
include size, battery life, features and functions, haptic interface, voice recognition, video capture/playback, GPS, 
network features, processing, wear-ability, provider/patient interaction considerations, durability, infection 
control, to name a few features that might influence the ultimate design of a mobile device for HC.   
 
Considerable study has been done in the areas of utilization of mobile devices, mobile device applications and 
acceptance of mobile device use.   Wu has evaluated the acceptance features of MCT in HC and found that 
perceived usefulness and perceived ease of use contributed significantly to the use of MCT by HC providers [255].  
As part of another study he found that adoption of this technology was driven by the healthcare provider’s traits of 
innovation adoption and the perceived availability of the technology [256]. 
 
Research literature on the applications of mobile devices, particular smartphones, is becoming ubiquitous.  The 
research covers both specific applications such as medical reference material, disease diagnosis and general areas 
such as smartphone use for patients or HC professional education and training [252].  
 
Smartphone-like devices provide an array of sophisticated sensors that can provide information related to location, 
speed of movement, activity, and social interaction, proximity/interaction with other devices or equipment and 
more.  This information can provide the ability for anticipatory computing where the device provides appropriate 
information to the user based on the context of interactions and other data without requiring action from the user 
[257]. 
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Figure 2.15: An example of Mobile Computing Technology -Google Glass- with augmented reality capability19 

 

Just -in-Time Information 

Just-in-time information borrows from the context of Lean.  For the sake of completeness, Lean is the concept of 
maximizing customer value while minimizing waste.  JIT is a system of delivery that provides just what is needed, 
just when it is needed, just in the amount that is needed.  JIT relies on three operating concepts: takt time, the pull 
system and continuous flow. 
 
JIT information differs from real-time information in at least one important way.  Real-time refers to the delivery of 
information as it is generated and does not necessarily have additional processing to restrict the volume of 
information, enhance its value to the end user or control its time of delivery based on the needs of the user.  In 
accordance with Lean principles, JIT information is adjusted to meet the needs of the user by providing the 
information in a contextual form, only the information that is needed is provided, and it is provided as needed.    
A simple example is monitoring stock prices.  Real-time information would be represented by a stock ticker as a 
continuous rolling display without regard to temporal need or specific information needs by the end user (Figure 
2.16, image 1).  A JIT information delivery system would provide information based on predefined requirements or 
user query.  The JIT information would be preprocessed to provide only the key information the user needed at 
that time, e.g. significant price change, forecasted change, company news, market influences, trends, etc. (Figure 
2.16, image 2).  

 
 
 
 
 
 
 
 
 
 

                                                                 
19 Image included under title 17 section 107 U.S. Copyright Law Fair Use Doctrine as educational material distributed for use without profit. 
Source: http://www.u1group.com/blog/article/working-with-google-glass 
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Figure 2.16: Real-time vs JIT information3, 20 
 
 
One of the best examples of JIT information is the Google Maps application for driving.  Google Maps is a 
Geographic Information System based mapping system that provides current updates to the user, or this example 
a driver.  Google Maps takes input from the user in the form of destination and things like preferred route, 
integrates it with historical knowledge base information including traffic patterns, and input data from multiple 
sensor sources like data from other cell phones in the area that fit certain criteria (e.g. speed, proximity to other 
phones, location, etc.), accident information from other sources, etc.  It integrates all this information and provides 
the driver with route information, indicates potential issues (e.g. road construction, disabled vehicle, debris in 
road), suggests reroutes if there is a traffic slowdown, provides the estimated time delay if there is a slowdown, 
and estimates the time of arrival.  Upon additional query Google Maps will provide nearest location, and route to 
nearby destinations of interest like gas stations, coffee, rest stops, etc.  Audio output in the form of direction 
information, such as turns or exits, is provided to the user to aid in driving without having to refer to the 
smartphone.  As a turn or exit is approached, the display will change to provide an expanded more detailed view of 
the turn.  All this information is updated in real-time and more importantly just-in-time (Figure 2.17). 
 
Google Maps provides the driver with a large amount of information in a simple one screen format.  Running 
behind the scenes is a massive decision support system that integrates multiple data sources.  This information is 
processed and integrated to provide the user with just the information they need at the time, just when it is 
needed, and just the amount that is needed (including the contextual information to help provide insight on 
potential future decisions that might need to be made). 
 

                                                                 
20 Images included under title 17 section 107 U.S. Copyright Law Fair Use Doctrine as educational material distributed for use without profit. 
Sources: stocksticker.com, http://www.shutterstock.com/video/clip-1769624-stock-footage-stock-market-data-tickers-board.html 

Image 1 

Image 2 
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JIT information integrates various disciplines including cognitive ergonomics, decision science, computer science, 
Lean, systems engineering, as well as the discipline specific areas that JIT information is being applied to as in our 
case, healthcare. 
 
Davenport discusses the potential that JIT information delivery provides for healthcare and suggests caution on 
some of the challenges such a system will face based on an early implementation of a JIT information system at 
Brigham and Women’s Hospital in Boston.  Davenport highlights the application of JIT information to decrease the 
occurrence of error as part of POC activities by making information “so readily accessible that it can’t be avoided”.  
The JIT system described is a POCCDST with an extensive backend logic system that combines information from 
various EHR sources 

 

 

 
Figure 2.17: Google Maps implementation as a JIT information source21 

 
Key insights provided were that: only processes and knowledge domains that are critical in the sense they have 
overarching importance due to drivers such as safety, cost, or risk; appropriate management and end-user support 
including the ability to measure utilization and performance; and, appropriate data sources and technical ability 
that can provide current and accurate information [75]. 
 
The concept of lean or Just-in-Time information fits squarely in the domain of patient centered point of care 
clinical decision support tools.  JIT information aligns with delivering the right information at the right time in the 
right way to enable optimal use by the user.  Barnesteiner argues that for nurses, JIT information contributes 
directly to improving patient safety when used as a POCDST, especially when integrated into organizational and 
operational priorities. 
 
Information for decision making needs to be available at the point of care. This includes easy access to drug 
formularies, evidence-based-practice protocols, patient records, laboratory reports, and medication administration 
records. Many organizations now have drug formularies and practice protocols available as applications for smart 
phones, thus providing for just-in-time information availability [258].  
 
There are a large number of applications of JIT POCCDST.  One study considers the application of a POCDST to 
antibiotic use and patient outcomes in a critical care unit concluded that point of care handheld computer-based 
decision support contributed to a significant reduction in patient length of stay and antibiotic prescribing in a 
critical care unit [259].  This corresponds with the observations from Davenport mentioned previously. 

                                                                 
21 Image included under title 17 section 107 U.S. Copyright Law Fair Use Doctrine as educational material distributed for use without profit. 
Source: http://www.cnn.com/2013/08/20/tech/mobile/google-waze-mobile-maps/ 
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One recent area of research focuses on the technology and tools underpinning JIT POCCDSTs.  Linan explored the 
development of clinical decision support rules that are based on computer interpretable guidelines.  In this 
application, pharmacogenomic guidelines were used to represent the semantics and decision logic [260].   This 
research highlights recent advances in building a common format for metadata, actions, events, and conditions as 
well as an expression language.  This common format construct was driven by the National Coordinator for Health 
Information Technology. This common format, Health eDecisions (HeD) interchange format also defines a 
methodology or schema for validation of compliant documents containing guidelines. Together, the HeD model 
and its schema represent the workflow and decision logic of interventions such as CDS rules, order sets and 
documentation templates.  The HeD editor has features that assist in modeling and testing clinical decision logic 
[261, 262] 
 
Another interesting area of active research on JIT POCCDSTs is medical education.  A review by Mi analyzed the use 
of mobile devices by health profession students.  Summarizing this review, mobile devices such as smartphones, 
tablets and the now somewhat obsolete PDA, found significant benefit in supporting the performance of health 
profession students in areas such as POC decision support, accessing healthcare information (e.g. online reference 
material, manuals, procedures, etc.).  The review indicated that students increased their use of JIT information 
sources as their familiarity with the system and information available increased. This was particularly true for POC 
use [14].   
 
Rees et. al. considered use of JIT POCCDST specifically for nursing education. According to Rees, student nurses use 
mobile devices in clinical settings to look up specific and abbreviated information to support decision making 
primarily during direct patient care.  Information areas include medication administration, best practices, and 
mobile apps (calculators, reference material, etc.) [263].  
 
JIT information and POCCDST are, or should be, integrated concepts.  A POCCDST will rely on a steady stream of 
timely, contextually relevant, appropriately structured information (AKA JIT information) as input to support the 
processing it does in order to provide the user with the best set of solutions to act upon.  Conversely, one can also 
argue that it is the role of a POCCDST to provide JIT information to the user for the same purpose.  So, different 
types of JIT information can act as both input and output for a POCCDST. 

Relationship of JIT to POCCDST 

Figure 2.18 shows the relationship of some of the primary elements of POCDSTs relative to JIT information delivery 
for healthcare.  What it hopes to show is that healthcare JIT information is directly influenced by advances in each 
of these areas.  Of particular interest, and I believe relevance, are the roles of cognitive ergonomics, data 
integration and adaptive/learning computing as it relates to the roles and functions of nurses in acute care 
settings.  Research and applications in other areas such as smartphone GIS systems (e.g. Google Maps), Pandora 
Music, advanced avionics systems (formerly known as - Pilots Associate), and NEST home automation, have 
commercial applications that exhibit utilization of varying degrees of JIT information integrated into DSTs. 

Similar to how behavioral economics has dramatically changed the view of micro and macroeconomics; cognitive 
engineering will optimize the human-computer interface for POCDST. Behavioral economics create a fundamental 
shift from the classical economic core belief of rational markets and objective behavior to what Dan Airely has 
coined predictable irrational, which views economic forces driven by the idiosyncrasies of human beliefs and 
behaviors.  In the same way cognitive engineering will accommodate human behaviors, perceptions and abilities to 
optimize utility and function for the end user. I believe that applications of cognitive engineering will define how, 
and very likely if, any given POCCDST will find its way to implementation. 
 
Decision theory, decision science and systems engineering, along with their respective sub disciplines, have a very 
well-developed research base that will influence JIT POCCDSTs.  With a few exceptions, developers of JIT 
POCCDSTs will focus on how to apply the current science in these areas to healthcare.  A key consideration is how 
to integrate these areas in the overall system to provide a decision support tool that is seamless for the end user 
and will instill confidence in performance.  Worthy of note is that use of POCCDST will be tempered as much by 
organizational and individual behavior factors, as by technical functionality.   
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Figure 2.18: Major elements of JIT information interface 

The advent of mobile computing in healthcare, especially in the form of engaging smartphones or tablets, will find 
diverse applications.  The limit, I believe, will not be technology based either in the form of hardware or software, 
rather the limit will be defined by organizational, administrative and behavioral causes.  Rees notes that the use of 
tablets and smartphones are in one sense a cultural phenomenon and the use by student nurses as an inherent 
part of their behavior will positively impact the use in the clinical setting [263].  Phillippi and Wyatt, renowned 
nurse educators and dreadnaughts of nurse education research, highlight the potential of smartphones as learning 
devices and clinical tools [264].  Exactly how mobile computing will be implanted in healthcare over time is difficult 
to predict.  While the commercial sector is rapaciously expanding its adoption of the technology, structural 
limitations inherent (or perhaps endemic) to healthcare, will act as a brake on the infiltration of the technology 
into the acute healthcare setting as formal decision support tools. Interestingly, users of apps such as epocrates® 
do so at their own risk as indicated by the terms of the User Agreement with no warranty that the information is 
accurate.  Other apps describe their products as Educational Use Only. 
 
Augmented reality (AR) is the live integration of digital information with the user’s environment.  It is the natural 
extension of the kind of JIT information systems that have been discussed here.  Where JIT information tends to 
focus on providing information in a particular area, augmented reality is envisioned to provide a suite of 
information as the user moves through their environment.  Hollywood provides the best instantiations of 
augmented reality with examples from the vision system of the Terminator and Ironman.  As with POCCDDSTs, AR 
processes, integrates and presents information to the end user, the difference is in the way the information is 
presented, namely, as a digital overlay of the user’s environment.  While there are significant concerns on 
incorporating AR into a clinical environment, it also holds the potential for tremendous advantage.  Some of these 
advantages are: 

• The integrated view provided by AR provides a more contextually rich environment for users, translating, 
hopefully, into fewer errors and a better patient experience; 

• AR should improve direct interactions with patients by providing the clinician with information such as 
vein location, areas of pain, etc. that would not otherwise be immediately available; 
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• AR is predicted to have a significantly positive impact on the training and education of healthcare 
providers by providing a richer more realistic experience. 

 
With the previous discussion as a backdrop for considering future work on JIT POCCDSSs, several other 
generalizations can be made:  

• POCDSS are making inroads into application by healthcare providers but there does not appear to be any 
uniformity of approach notwithstanding the efforts of various organizational bodies, 

• Specific features focusing on usability, timeliness of information and aligning the application with specific 
need is crucial for end user adoption, 

• The backend or “intelligent” part of the system, while not seen by the user, will define the performance of 
the system including accuracy (e.g. correct diagnosis, valid laboratory result ranges, etc.), integrative 
functioning, and direct benefit to the end user, 

• How the user interacts with the system, the UI, needs to be carefully thought out and tested to ensure the 
desired performance and utility for the user.  Items to consider are text input, screen manipulation (e.g. 
swipe vs. tab vs. button), alerts/alarms, haptic responses, screen layout, colors, text style and size, 
customizability (for display, alerts, information layout, etc.), and ultimately (also my favorite 
consideration) the use of predictive and prescriptive analytics (including adaptive computing) to guide the 
user. 

 

Limitations/Considerations on Use of JIT Information Based POCCDST 
The rapid rate of change of software and hardware technology will create a lagging environment between 
implementation and development unless more flexible approaches can be used for integration of new technology.  
Cybersecurity is an example of where such flexible approaches have been accommodated.   
 
As noted by Phillippi and Wyatt, use of mobile platforms can be expensive.  The expense can be particularly 
prohibitive if the smartphone platform is pushed down to individual users (each user has their own device).  With 
technology obsolescence occurring at an increasing rate and the cost of capital investment becoming more 
difficult, the insertion of new POCCDST can be problematic. 
Regulatory matters remain an issue for CDSTs.  An assumption would be that the more dynamic the tool in the 
sense of getting input from multiple data sources, such as JIT information, the more complicated the regulation of 
the associated tool.  The Federal Drug Administration (FDA) is the regulatory authority for CDSTs.  Part of the issue 
is that these systems fall into several categories depending on how the tool influences clinical outcome.  Lower 
level solutions, such as Body Mass indicators or medication reminders, are not likely to create regulatory issues.  
Tools that support intervention or decisions that have the potential to harm patients are subject to regulation.  
With no clear time frame for congress to act, many commercial developers have moderated their efforts.  While 
this will not likely directly influence research, it could dampen clinical evaluation and implementation.  
Risk/liability is another factor that could have an overarching effect similar to regulatory issues.  Even with 
regulatory clarity, research on systems that could impact patient health in a negative way carries the potential for 
legal concerns.  One consideration is that JIT POCCDSTs that use some form of statistical, or rule-based approach 
by definition will create some wrong decisions. Then the question will be how administrators will deal with this 
uncertainty.  
 
As we recognized the advent of other forms of JIT information, delivered mainly through smartphones, such as 
social media inputs, text messages or even apps designed to assist performance, can be a significant distraction to 
performing complex tasks such driving equipment operation.  They can also degrade performance of the more 
mundane or rote tasks such as walking.  Based on sound research, the myth of the human’s ability to multitask has 
been shattered many times over.    
 
Lean approaches, such as JIT, have their own inherent problems.  JIT systems require either a predictable even 
flow or robust on demand capability.  Performance of the JIT system degrades as these factors decrease.  The core 
assumption of JIT is that whatever is provided is what is needed.  For healthcare JIT information, it is easy to 
conceive of circumstances, that due to the complexity of the situations, the information is not entirely sufficient or 
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worse yet, inappropriate under the circumstance.  JIT inventory relies on its supplier sources for timely and 
accurate delivery, the same holds true for JIT information. 
 
No system is infallible.  It is conceivable that information provided by the JIT could be wrong either for an 
individual patient, which could propagate errors quickly creating serious unknown potential consequences.  This 
raises the question of what fail-safes could be built into the system to prevent or at least identify errors? 
A sociotechnical issue is that users, especially those with less experience in the area off interest, could become too 
reliant on JIT information and do not balance the information the JIT POCCDST provides against their critical 
decision skills.  In other words, the user could blindly follow the recommendation of the tool and they do not 
evaluate the information from the tool against their experience and judgment. 

Human Error 

Humans are engineered to make mistakes, and they make the preponderance of errors in contrast to sources of 
non-human errors (Figure 2.19).  Perhaps more aptly put, we were not engineered to be infallible.  Our neural 
connections, mental processing, perceptions22 and even DNA is prone to mistakes.  As we begin to understand the 
neuro-physiological basis for human error processing [265, 266] it becomes clear that there is an organic or 
physical basis for humans to be consistent in their lack of performance, that is making mistakes is inherent to being 
human [267].  
 
The increasing interest in the areas of cognitive engineering and behavioral aspects of the science is shedding 
more light into the intricacies of how and why humans make mistakes.  The concept of the rational consumer, or, 
the logical scientist, does not exist, at least in pure form.  Dan Ariely and others have considered the effect of 
emotion, biases and perceptions on errors in decision making.  The considerable body of work by Ariely and his 
colleagues contributes to the general observations [268-271]: 

• Humans are inherently irrational, while we believe are behaviors and actions are logically based on good 
judgement and reason we are driven largely by emotion and misperception ; 

• People are different with different capabilities, experience and biases [this is an important consideration 
in error-proofing since errors occur at the level of the individual]; 

• Performance is, at least in part, determined by the work environment; 

• Performance is influence by peers, an individual’s past and circumstances; 

• Motivation for improving performance (including reducing errors) is a complex mix of rewards, incentives, 
peer pressure, and a notion of team; 

• People have inherent mental blocks that contribute to consistent and continuous error generation; 

• People have limited capacity to effectively acquire and process all relevant data; they have difficulty in 
determining which data is actually important or even relevant. 

 
An extensive body of literature exists on human error (HE) with the earliest citation noted being from 1900 on the 
maneuvering of ships.  Interestingly, this author, Balestrieri, considered the effect of emotional influences, in 
particular fear and anxiety, on a ship pilot’s ability to maneuver a ship and recommended the use of simulators to 
enhance performance [272].  This is remarkable in the sense that much of the early literature focused on the 
mechanistic of human error.  That is, they considered factors such as mental slip lapses, inattention, forgetfulness, 
etc. and the potential remedies for these fallibilities.   Balistreri viewed HE from the systems perspective and 
evaluated the human as a part of the overall ship maneuvering system.  The fact that he was before his time might 
explain, in part, why his work was cited only three (and after this four) times since 1900. 
 
 
 
 
 
 

                                                                 
22 As an interesting digression the following video is good for use in class or for your own entertainment to see how attention and perception 
affect error.  www.theinvisiblegorilla.com/videos.html 
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Figure 2.19: Human error greatly exceeds the occurrence rate of physical or mechanical error 

As inferred from the previous paragraph, there are two general approaches to considering HE; the person 
approach and the system approach as coined be Reason [273].  The Person Approach focuses on the psycho-
mechanistic performance of the individual.  That is, it attempts to consider the cognitive and psychological 
capabilities of humans as they relate to performing tasks.  In doing this, it evaluates elements such as memory, 
attention, understanding, emotional states, awareness, motivation and other factors relative to error occurrence.  
In simpler terms, the person approach views human error from the perspective of how people make mistakes. 
 
Different types of errors have different types of causes.  Reason parses errors or mistakes in execution failures 
(slips, lapses, trips and fumbles) and planning or problem-solving failures (aka mistakes).  Mistakes are divided into 
rule-based mistakes and knowledge-based mistakes.  Reason also makes a distinction that errors result from 
information-handling problems and violations which are purposeful deviations from rules or procedures.  The state 
of errors/mistakes can be active and latent: active errors are those that are committed by those directly involved 
with the activity, latent errors are those that are organizational, procedural or in some other way not immediately 
coupled to the direct performance of work[274] (Figure 2.20).   
 
The systems approach J. Reason speaks of considers the human with all its fallibilities as an element of the system.  
The design of a system with humans in the loop needs to consider that errors are to be expected and as a result, 
the design of the system needs to accommodate these errors.  An interesting shift in perspective with this 
approach is that human errors are seen as a consequence of the system design.  A system designed under this 
approach would build in error proofing both as part of the operation of the system but also the organizational 
 
Human errors have been classified as: 

• Errors of omission (tasks that are skipped, forgotten, missed) 

• Errors of commission (tasks that are performed incorrectly) 

• Sequential errors (tasks performed out of sequence) 

• Compensating error (multiple errors that have an offsetting effect, they cancel each other out) 

• Temporal errors (tasks performed too early too late or not within the required time) 
 
These types of errors can obviously take on many forms across many disciplines.  Each of these error classifications 
can be separated into their own respective taxonomy which will partially depend on the area to which is being 
applied.[275] 
 
 

 

Human Error 
Non-Human Error 
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Figure 2.20: General taxonomy of human error 

 
There are a variety of factors that influence human performance as it is related to the occurrence of errors.  These 
include factors such as fatigue, disorientation, training, motivation, stress, lack of skill, confusion, boredom, 
knowledge/experience, and inadequate or impaired perceptual or cognitive ability. processes that influence the 
operation of the system.  A basic concept of this approach is that human performance as it relates to errors cannot 
be changed, rather the conditions under which human’s work need to be designed to accommodate human 
performance [276]. 
 
Extensive research has been done on the types and causes of human error and how to attempt to prevent it.  This 
is particularly true for potentially high consequences such as aviation, nuclear facility operations, healthcare, mass 
transportation, and pipeline and oil rig operations [277-281].  While every error is unique, the contributing factors 
can be classified based on the behaviors leading to the error. 
 
It is widely recognized that most errors do not happen in isolation.  Instead, they are a result of a chain of events or 
conditions that lead to the occurrence of the error.  From Heinrich’s work first published in 1931, Industrial 
Accident Prevention: a Scientific Approach [282], to its further development by Bird and Germain in Practical Loss 
Leadership [283], as well has Bird’s “Domino Theory, and Reason’s “Swiss Cheese” model of human error [284] 
(Figure 2.21), the integrated and multiple interactions of causative factors have been embraced by most in the 
field of human error [285].  
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Figure 2.21: Reason’s Swiss cheese model of error occurrence 

 

Situation Awareness 

An important element of HE occurrence is Situation[al] Awareness (SA).  A particularly applicable definition of SA is 
provided by Endsley [286]: “Situation awareness is the perception of the elements in the environment within a 
volume of time and space, the comprehension of their meaning, and projection of their status in the near future”  
Endsley goes on further to define specific levels of SA, which is provided in expanded form [287]: 

Level 1 – Perception of the elements in the environment – in this level the agent recognizes the status, 
attributes, and dynamics of relevant elements in the environment. 
Level 2 – Understanding the current situation – building upon the disjointed elements of Level 1, the 
agent comprehending the significance of these elements and how they might relate in the present 
situation. 
Level 3 – Projection of future statue – here the agent understanding of the potential impacts that the 
combined elements form Levels 1 and 2 might portend and formulates courses of actions that avoid or 
mitigate the error. 

Cognitive Error 

Cognitive error (CE) can be defined as mistakes made resulting from faulty mental models, heuristics, 
misinterpretation of information or other types of conscious error in decision making.  Cognitive error can be 
classified into two general categories: 

• Faulty assessment of the likelihood of something happening (e.g. overestimating disease likelihood)  

• Failure to consider all relevant possibilities 

The Merck manual categorizes cognitive error as follows [288]: 

• Availability error – misestimating the prior probability of a condition because of recent experience or 
event 

• Representation error – when the likelihood of a solution is based on how closely the event fits a typical 
pattern without considering all of the alternatives 

• Premature closure – failure to consider other possible solutions and stop collecting data (jumping to 
conclusions) 

• Anchoring error – when an initial conclusion or decision is clung to even when contradictory or conflicting 
new information is accumulating 

• Confirmation bias – When data confirming one’s decision is considered and contrary data is ignored or 
under-weighted 

• Attribution error – negative stereotypes that lead decision makers to misjudge or minimize other factors 

Unsafe Supervision 

Organizational influences 

Preconditions for Unsafe Acts 

Unsafe Acts of Operators 



www.manaraa.com

66 
 

• Affective error – avoiding generating additional information because it will create a negative or distasteful 
situation 

Similar in both aviation and healthcare, the procedural and diagnostic errors have been observed to be the 
greatest source of cognitive type error [178, 290-292]. 

O’Hare defined a decision-making approach that led to a multistep process for diagnosing cognitive failure.  This 
model assumes that information is being processed from the start of the action using detection cues in the 
environment and ending with action execution (Table 2. 11) [289].  
 
While HEs are recognized to be a result of broader system errors, they are exhibited by the frequency of their 
occurrence.  There are many factors that influence the human error rate; the values listed in Table 2.13 are only 
representative of error rate.  The value of this table is that it does provide some insight in the stochastic nature of 
human error rates and that, in a general sense, human error is both predictable and, in some ways, unavoidable.  
Review of this table indicates that humans do not perform well when tasks require precision or great care and 
doing complicated non-routine tasks.  Adding increasing levels of stress increases the error rate [293]. 
Smith provides the broad guidelines in Table 2. 13.  He states that in any particular situation, the human-response 
reliability will be shaped by any number of factors which include: 

• Environmental factors 
o Physical 
o Organizational 
o Personal 

• Intrinsic 
o Individual idiosyncrasies and selection 
o Training 
o Experience 

• Stress Factors 
o Personal 
o Circumstantial 

 

Without much imagination, one can think of how these errors and probabilities would relate to medication 
administration errors.  Errors, such as failing to respond to an annunciator, reading an indicator incorrectly, 
attaching a connector (e.g. IV tube) incorrectly, are all directly applicable to healthcare.  While the actual 
probabilities might be different, Smith’s work has man analogs in healthcare. 

Reduction/Elimination of Errors 

There is a seemingly endless variety of methods and techniques to reduce or eliminate errors.  In the conventional 
realm of industrial engineering, reliability/quality engineering and mistake/error proofing are the central areas.  
There are two basic approaches to reduce or eliminate errors - assessing how the errors occur in a process, and 
building approaches prevent them from occurring. 
 
The Institute for Safe Medication Practice (ISMP) has provided a rank order of error-reduction strategies (Table 2. 
12).  The heading “Power” indicates the effectiveness of error reduction for system changes for safe medication 
use.  The list starts at engineered controls without humans in the loop down to activities that rely solely on direct 
action by humans.  This table is a succinct commentary on the practices industrial and systems engineer’s use in 
implementing reliability and maintainability practices [293-295].  The ISMP list of error-reduction strategy can be 
generalized to most other areas. 
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Table 2. 11: Categorization of cognitive error types 

Error Type Error Description 

Non-Human Error (structural, mechanical, electrical, 
S/W, other 

Agent intervention could not prevent the error or is 
directly impacted by the error 

Information Error The agent did not detect cues arising from the change 
in the system states 

Diagnostic Error The agent did not accurately diagnose the state of the 
system based on the information available 

Goal Setting Error The agent did not choose the appropriate goal that 
was reasonable given the situation 

Strategy Selection Error The agent did not choose a strategy (means of 
attaining) that would achieve the desired outcome 
without error 

Procedure Error The agent did not execute procedures consistent with 
a correct strategy or approach 

Action Error The agent did not execute the procedures as 
intended 

 

 
 

Table 2. 12: Rank order of error-reduction strategies23 

Error-Reduction Strategy Power (leverage) 

Fail-safes and constraints High 

Forcing functions  

Automation and computerization  

Standardization  

Redundancies  

Reminders and checklists  

Rule and policies  

Education and information  

Suggestions to be more careful or vigilant Low 

 

 

 

                                                                 
23Source:  https://www.ismp.org/newsletters/ambulatory/archives/200602_4.asp 
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Table 2. 13: Human error rates [293] 

Task Read/Reason 
Physical 

operation 
Everyday 
yardstick 

Simple possible task    
Fail to respond to annunciator 0.0001   
Overfill bath   0.0001 
Fail to isolate supply  0.0001  
Read single alpha-numeric incorrectly 0.0002   
Read 5-letter word with good resolution incorrectly 0.0003   
Select wrong switch  0.0005  
Fail to notice major cross-roads   0.0005 

    
Routine simple tasks    
Read a checklist or digital display incorrectly 0.001   
Set multi-position switch incorrectly  0.001  
Calibrate dial by potentiometer incorrectly  0.002  
Check or wrong indicator in an array 0.003   
Incorrectly carry out visual inspection for a defined 
criterion (e.g. leak) 0.003   
Select wrong switch among similar switches in a set  0.005  
Read analog indictor incorrectly 0.005   
Read 10-digit number incorrectly 0.006   
Leave light on   0.003 

    
Routine tasks with care    
Mate a connector incorrectly  0.01  
Fail to reset valve after some related task  0.01  
Record information or read graph incorrectly 0.01   
Let milk boil over   0.01 
Type character incorrectly  0.01  
Do simple math incorrectly 0.01-0.03   
Wrong selection-vending machine   0.02 
Incorrectly replace detailed part  0.02  
Do simple algebra incorrectly 0.02   
Read 5-letter word with poor resolution incorrectly 0.03   
Put 10 digits into calculator incorrectly 0.05   
Dial 10 digits incorrectly 0.06   

    
Complicated non-routine tasks    
Fail to notice adverse indicator when reach for a wrong 
switch or item 0.1   
Fail to recognize incorrect status in roving inspection 0.1   
New work shift - fail to check hardware unless 
specified 0.1   
General (high stress) 0.25   
Fail to notice wrong position of valves 0.5   
Fail to act correctly after 1 min in emergency situation 0.9   

    

In failure rate terms the incident rate in a plant is likely to be in the range of 20(10)-6 per hour 
(general human error) to 1(10)-6 per hour (safety related incident). 
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Error Analysis and Evaluation Methods 

There is a voluminous and sweeping amount of published work on error analysis and evaluation methods.  For 
both my sake and the sake of the reader, we will cover only a very limited amount of the material.  The following 
outline highlights some of the better-known techniques.  A comprehensive description of this material is covered 
in the literature review of the dissertation and the answers to the Comprehensive Questions related to this 
research. 
Error Analysis Techniques and Evaluation Methods24 

a. Failure Modes Assessment 
i. FMEA 

ii. FMECA 
iii. HFMEA 

b. Sequence Diagrams 
i. Ishikawa (fish bone) 

ii. Fault Tree 
iii. Event Tree Modeling 
iv. Decision Tree 
v. Influence Diagram 

c. Root Cause 
i. Cognitive Reliability and Root Cause Analysis 

ii. Causal Analysis 
iii. Cause-Consequence 
iv. Process Maps 

d. What-if Analysis 
e. Pareto Charts 
f. Humans Reliability 

i. Human Error and Safety Risk Analysis (HERSA) 
ii. Human Error Assessment and Reduction Technique (HEART) 

iii. Cognitive Reliability and Error Analysis Method (CREAM) 
iv. Generic Error Modeling System (GEMS) 
v. Probabilistic Risk Assessment 

1. Technique for Human Error Rate Prediction (THERP) 

Human Factors Analysis and Classification System (HFAC 

 

Failure Modes and Effects Analysis 
Failure Modes and Effects Analysis (FMEA) is perhaps among the most well-known techniques for risk evaluation 
and assessment.  Developed by the military in the 1940s, it gained wide application in the 1990’s and has been 
used extensively in a wide range of fields include aerospace, automotive, construction, and HC. [296, 297]  FMEA 
has undergone many modifications and has been modified for unique application in certain disciplines: The 
Healthcare (HC) industry has created its own version of FMEA known as Healthcare FMEA or HFMEA developed 
originally by the Veterans Administration National Center for Patient Safety [297].  HFMEA combines the 
detectability and criticality steps of the traditional FEMA into an algorithm presented as a decision tree.  It also 
replaces the calculation of the risk priority number with a hazard score.  Failure Modes and Effects and Criticality 
Analysis adds a criticality function that determines the relative severity of the potential effects of the failure 
through either qualitative or quantitative methods. 

 

                                                                 
24 For the sake of brevity only an outline of error analysis will be provided 
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FMEA is a process to assess risks of failure or errors within a system by breaking it down into its constituent 
elements and assigning risk priority numbers (RPN).  The Institute for Healthcare Improvement IHI) defines FMEA 
as: 
“…a systematic, proactive method for evaluating a process to identify where and how it might fail and to assess the 
relative impact of different failures, in order to identify the parts of the process that are most in need of 
change.”[298]  
 
While not surprisingly, the IHI defines FMEA in the context of analyzing errors from healthcare processes, FMEA is 
applied to a varied set of activities.  The following diagram from Ambekar highlights the types of FMEAs.  It has 
been modified to reflect additional process FMEAs (Figure 2.22).[299].  FMEA provides a number of benefits in 
terms of understanding the source and potential mitigations of errors and their associated impacts (or risks), the 
FMEA process:[300-303] 

• Captures the collective knowledge of the team 

• Provides a methodical and structured process for identifying process areas of concern 

• Provides a model for evaluating the impact of changing the assumptions related to the elements of the 
FMEA 

• Provides documentation of the risk reduction activities 

• Helps identify critical-to-quality characteristics 

• Provides a risk-based prioritization of safety items/risks 

• Can be used with qualitative or quantitative data 

The Risk Priority Number (RPN) is a product of three separate values, namely the occurrence of the failure mode 
(O), the severity of the occurrence (S) and the chance that the occurrence is detected (D). The elements of the RPN 
are multiplied together to provide a composite score which provides an overall risk ranking.  So, 

RPN = O x S x D 

Various approaches have been taken to rate the risk for O, S and D. Most typically, the scale is similar to a Likert 
scale such as applying values based on a 5, 7 or 10 point scale[304].  Subject Matter Experts (SMEs) are engaged to 
assign risk scores for each failure mode or if the system has defined probabilities for the failure modes, such as 
historical quality or reliability data< those can be used to assign risk values[305].  “D” can be based on variety of 
measures, most typically it relates to the odds or likelihood of detection defect items, such as percent or odds 
ratios. “S” can be a subjective assessment where a subject matter expert assigns a qualitative score to the degree 
of impact of the error or a quantitative approach may be devised such as actual mortality ranges or number of 
homes without power. “O” as with the other factors has quantitative measures based on historical data such as 
the frequency of defects of a particular component, or the number of time a medication dose calculation is not 
performed.[306-310] 
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Figure 2.22: Types of FMEAs 

 
With the long history and wide use of FMEA, there have been many permutations to the implementations of the 
process, particularly related to developing the RPN, which is at the heart of the risk ranking.  While developing the 
RPN can be relatively straightforward, the RPN can also create challenges.  Significant and diverse efforts are 
reported in FMEA literature to address shortcomings of the traditional RPN [311-313]. One of the challenges is for 
the SMEs to assign discrete values to the RPN factors making it difficult to evaluate the risk factors precisely.  Some 
of these criticisms include, but are not limited to, the following: 

• Different values of O, S. and D might produce the same value of RPN, but their actual risk implication 
might be different 

• The relative importance of O, S and D is not taken into consideration in a conventional FMEA, whereas the 
three risk factors are assumed to be equally important, that might not be the case in a practical 
application of FMEA. 

• In practice, the actual values of O, S and D can be difficult to be precisely estimated: the value of the risk 
factors can be expressed “linguistically” such as Infrequent, Occasionally Likely, Somewhat Important, 
Very Important, and so on.  

• Certain of the risk factors, typically S, cannot be reduced in practice, for example death is terminal and 
difficult to reverse therefore its consequences are difficult to mitigate.  This makes the FMEA a theoretical 
exercise as opposed to a practical one. 

• The RPN presupposes that the scale used is an interval scale where each interval is equal and consistent.  
This might not be the case in practice, for example the value 10 might have 7 times the implication of 5 as 
opposed to twice the value. 

One approach used to help remedy this is a fuzzy approach to define the RPN factors.  Ambiguous or vague 
information and/or subjectivity in the ranking scales add inconsistency in FMEA.  This deficiency has been 
addressed by introducing fuzzy logic as part of the RPN decision process. Another approach to providing more 
perspective for the RPN value is to use Multi-Criteria Decision Making (MCDM) which also includes the Analytic 
Hierarchy Process (AHP) as well as other methods (Table 2. 14).   “Fuzziness” in this context refers to establishing 
risk factors that reflect a range of likely values as opposed to a single discrete value.  This approach considers the 
most likely values for a risk value and represents the values as a composite score.  This part of the method is 
referred to as “defuzzifying” the data. 
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Table 2. 14: References for incorporating fuzzy logic into FMEA 

Authors and 
Year 

Title Computational 
Technique 

Application 
Area 

Description 

Meng, Peng 
2006 [319] 

Fuzzy FMEA 
with a guided 
rules 
reduction 
system for 
prioritization 
of failures 

fuzzy rule based 
(if/then) guided rules 
reduction system 

NA Overview of fuzzy RPN 
approach 

Kahraman, Kaya, 
Senvar 2012 
[316] 

Healthcare 
Failure Mode 
and Effects 
Analysis 
Under 
Fuzziness 

linguistic variables if-
then rules 

Healthcare Application of fuzzy RPN to HC 

Chin, Chan, Yang 
2006 [320] 

Development 
of a Fuzzy 
FMEA based 
Product 
Design 
System 

fuzzy knowledge-based 
system 

Product design Design of FMEA prototype 
system using fuzzy methods 

Xu, et. al. 2002 
[321] 

Fuzzy 
assessment 
of FMEA for 
engine 
systems 

Fuzzy rule-based 
system 

Automotive, 
diesel engine 

Application of fuzzy logic-
based method with diesel 
engine example 

Kumru, Kumru 
2013 [322] 

Fuzzy FMEA 
application to 
improve 
purchasing 
process in a 
public 
hospital 

Fuzzy rule-based 
system 

Purchasing Application of fuzzy FMEA to 
Hospital Purchasing 
Department 

Garcia, Schirru, 
E'Melo 2005 
[323] 

A fuzzy data 
envelopment 
analysis 
approach for 
FMEA 

Data envelopment 
analysis 

NA Determine ranking indices 
among failure modes using 
fuzzy sets 

Guimareas, Lap 
2004 [324] 

Fuzzy FMEA 
applied to 
PWR 
chemical and 
volume 
control 
system 

Fuzzy inference system Nuclear 
Engineering 

Nuclear reliability modeling 
using fuzzy IF-Then rules 
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Table 2.14:  References for incorporating fuzzy logic into FMEA (continued) 

     

Zaili, Bonsall, 
Wang 2008 
[325] 

Fuzzy Rule-
Based 
Bayesian 
Reasoning 
Approach for 
Prioritization 
of Failures in 
FMEA 

Bayesian Fuzzy System Aerospace Fuzzy rule-based Bayesian 
approach for prioritizing 
failures in FMEA 

Abdelgaward, 
Fayek 2010 
[326] 

Risk 
Management 
in the 
Construction 
Industry 
using 
Combined 
Fuzzy FMEA 
and Fuzzy 
AHP 

Fuzzy AHP and Fuzzy 
FMEA 

Construction Use of fuzzy approaches for 
AHP and FMEA to improve 
selection of RPN 
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This has been done with both ordinal and interval data.  The use of ordinal data typically employs a fuzzy linguistic 
approach and a fuzzy rule-based approach to determine the criticality/riskiness level of the error.  Interval data 
requires a somewhat different approach where the values are weighted and a means to find the central tendency 
is used. There are a wide variety of approaches and much has been written for each.  With this increase in 
perspective comes a significant increase in complexity and difficulty in implementation [314-316]. Another 
approach to providing more perspective for the RPN value is to use Multi-Criteria Decision Making (MCDM) which 
also includes the Analytic Hierarchy Process (AHP) as well as other methods. 

Sequence Diagrams 

Sequence diagrams come in a variety of types and flavors.  Ishikawa or fishbone, or cause and effect diagrams 
were originally used as part of quality control methods but are also used in root cause analysis and process analysis 
[317].   Normally the diagram starts with a problem statement on the right side of the diagram.  Flowing from left 
to right the developer identifies influencing factors, for example:  site, task, people equipment, and control.  Along 
each of the factors, the possible causes are identified per the noted example [318]. 

The fishbone diagram has a number of benefits: 

• It can take a complex problem and provide a relatively simple visitation of it 

• It can permit an in-depth analysis and evaluation considering the entire mix of cause and effects 

• Demonstrates weaknesses in understanding of the problem 

• Allows integration of all the factors that influence the problem 
Disadvantages of fishbone diagrams are: 

• Can lead to divergent problem solving (chasing rabbits down the wrong path) 

• There is a tendency to base the causes on opinion rather than fact 

• Can “blow-up” from a list of too many causes 

Decision Trees 

Decision trees, for the purposes of this discussion, include the set of acyclic graphs that function as decision 
support tools.  They include, but are not limited to, fault trees, event tress and influence diagrams. Decision trees 
fault trees, and event trees are all very similar in structure and function. They use trees, directed acyclic tree-like 
graphs to model decisions or error events and their possible outcomes including probabilities, event outcomes, 
and costs or utility as represented in Figure 2.24[327-329].  Decision tress and their siblings have multiple uses 
including classification, data mining, decision making, and hazards analysis [330]. Decision or event trees can be 
combined with other tools such as Monte Carlo to add uncertainty for the occurrence of the node (i.e. fuzziness) 
[331]. 

Among decision support tools, decision trees (and influence diagrams) have several advantages. Advantages of a 
decision tree: 

• Are straightforward to understand and interpret.  

• Have value even without much data.  

• Allow the addition of new possible scenarios 

• Help determine worst, best and expected values for different scenarios 

• Use a “white box” model: the decision path and methodology is readily apparent 

• Can be used for different data types including categorical data 
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Figure 2.23: Fishbone or Ishikawa diagram25 

                                                                 
25 http://www.ck12.org/section/Elements-of-Agent-based-Models/ 
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Figure 2.24: Representation of Binary Fault Tree  [329] 
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Disadvantages of decision trees: 

• Trees can get very complex particularly if many values are uncertain, and there are multiple links (i.e. 
more than binary) between nodes 

• The size of decision trees can grow large very quickly and become computationally intensive. 

Root Cause Analysis 

Root Cause Analysis (RCA) enlists various tools and techniques to trace problems to their origins.  It attempts to 
identify the origin of an error or problem using a specific set of steps.  RCA assumes that systems and events are 
interrelated.  This is a key consideration since a systems perspective is crucial for a systems level assessment of the 
actual underlying cause(s) of the error.  Typical areas for evaluation include physical causes, human causes and 
organizational causes.  Root cause analysis is a technique on its own, but also has a variety of techniques that 
contribute to the approach. 

The Cognitive Reliability and Error Analysis (CREAM) technique is a Human Reliability Analysis (HRA) technique that 
allows examination of agents’ actions through the context of performance-shaping factors. The CREAM also 
employs a cognitive model to explain cognitive failures.  In this way it considers the context in which the agent 
operates and also considers the cognitive nature of the agent [332, 333].  CREAM will be described in more detail 
later.   

Causal analysis (CA), is the subset of techniques that contribute to performing RCA [334].  Techniques included in 
CA include the, Five Whys, and Cause-effect diagram (a tree diagram used to break down cause into a tree-
structure to define possible causes). 

Cause-Consequence Analysis (CCA) is a methodology for assessing the chain of consequences leading to an error.  
CCA combines two different tree structures together, a consequence tree and the associated fault tree. In this way 
it is similar to event trees or fault trees.  Similar to other trees or sequence structures, it can grow quickly and 
become unwieldy especially since it combines several tree approaches [335].  

Process maps (PM) are a ubiquitous approach for laying out the sequence of steps of an activity: it is a workflow 
diagram to help in understanding a process or series of parallel processes.  PMs are used in six sigma applications 
for improvement (value stream mapping) and can also be sued to define areas of potential error.  It is typically 
used in conjunction with other techniques such as FMEA. The lean process maps underpin the DMAIC (Design, 
measure, analyze, measure, improve and control) process and provide the structure for further analysis. 

What if Analysis 

What if analysis (WIF) is a form of sensitivity analysis used to evaluate the impact of various alternatives.  In the 
context of error analysis, it assesses the effect of potential errors or factors that could influence errors.  WIF is a 
useful tool not only for evaluating the quantitative aspects of decision options; it also has application in computer 
simulation models.  For computer simulations, WOF can be used to establish confidence with respect to changes in 
parameters of inputs [336]. 

Pareto Charts 

Pareto Charts (PC) are a form of impact analysis providing a graphical representation of the relative differences 
among groups.  They are based on the Pareto principle that states, in a general sense, 20% of the input or cause 
creates 80% of the result (the 80:20 rule).  While this rule is not universally applicable, its application has great 
utility [337]. PCs are combination diagrams with both line and bar depictions of the relevant data.  The bars 
represent the frequency or amount of the event or item of interest such as occurrence, value, time, etc.  The bars 
are arranged in descending order.  The line is a cumulative total of the representative function (Figure 2.25).  PCs 
can be used as part of RCA, value stream development, and decision making.  
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Figure 2.25: Medication administration record error Pareto chart26  

Human Reliability/Error 

Human reliability, or the lack thereof, as a source of error, has been studied extensively and a wide variety of tools 
have been identified to analyze and reduce these errors.  A high-level summary will be provided for the techniques 
identified.  The United States Department of Transportation, Federal Aviation Administration has done extensive 
review and research in the areas of human error and reliability.  They have evaluated many of the techniques 
noted above; their assessment will be provided here largely intact as suitable summaries of these techniques. 

HERSA 

HERSA is a proactive tool for assessing the risk of human error.  HERSA is based on FMEA but specifically considers 
human errors and is based on tasks.  It has the same scales that FMEA does, namely Likelihood of occurrence; 
severity of outcome and Likelihood of detection.  The goal of using HERSA is to produce an ordered list of 
errors/outcomes. As with FMEA, HERSA as the following attributes: 

• Identifies the relative likelihood of particular errors 

• Does not depend on past history, but can use this information 

• Relies on relative, ordinal scaling 

• Rank orders error modes 

• Identifies critical single component failures 

• Can utilize detection/mitigation (or not: similar to FMEA) 

• Produces a task breakdown as a byproduct 
 
 
 

                                                                 
26 Source:  http://www.infoworks-tn.com/lean-six-sigma-healthcare/ 
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The methodology for HERSA is the same as FMEA.:  error modes are identified by experts or data; ratings are 
assigned for each of the scale areas using a 1-5 scale, and ratings are calculated by –  
Hazard Index (HI) = Likelihood X Severity; 

Risk Priority Number (RPN) = Likelihood X Severity X Detection. 

HEART 

HEART is a technique to assess and define human error probabilities by matching the task being assessed to one of 
the nine generic task descriptions from a given database and then to modify the human error probabilities (HEPs) 
according to the presence and strength of the identified error producing conditions (EPCs) The nine generic task 
types used in HEART: 

1) Totally familiar, performed at speed with no idea of likely consequences  
2) Shift or restore system to new or original state on a single attempt without supervision or procedures 
3) Complex task requiring high level of comprehension and skill  
4) Fairly routine task performed rapidly or given scant attention 
5) Routine highly-practiced, rapid task involving relatively low level of skill  
6) Restore or shift a system to original or new state following procedures with some checking  
7) Completely familiar, well designed, highly practiced routine task occurring several times per hour  
8) Respond correctly to system command even when there is an augmented or automated supervisory 

system  
9) None of the above 

 
HEART has the advantages of being recognized as a proven tool for predicting human reliability and identifying 
methods of reducing human error.  It can be applied to many different types of processes across different 
industries since its methodology is based on the human rather than a technical process.  As with other similar 
processes, HEART suffers from relying on significant judgment from the user [338]. 

THERP 

THERP was originally developed to aid military strategists to determine expected failure rates for nuclear weapons. 
It has also been applied to the analysis and design of human-machine interactions. THERP provides human 
reliability data for probabilistic risk assessment studies; namely, to predict human error probabilities and to 
evaluate the degradation of human-computer systems likely to be caused by human errors alone or in connection 
with equipment malfunctioning, operational procedures, or other system and human characteristics that influence 
complex system (i.e., joint human-machine) behavior. The basic assumption of THERP is that the operator’s actions 
can be regarded in the same way as the success or failure of a piece of equipment. The theory is that the reliability 
of the operator can be assessed in essentially the same way as an equipment item. The operator’s activities are 
broken down into task elements and an estimate of the probability of an error for each task element is made, 
based on data or expert judgment [338] . 

CREAM 

CREAM is a Human Reliability Assessment tool, as described by the Federal Aviation Administration (FAA) that 
allows:  

1) Identification of those parts of the work, as tasks or actions, that require or depend on human cognition, 
and which therefore may be affected by variations in cognitive reliability,  

2) Determination of the conditions under which the reliability of cognition may be reduced, and whether 
these tasks or actions may constitute a source of risk,  

3) Provision of an appraisal of the consequences of human performance on system safety which can be used 
in a PRA/PSA, and  

4)  Development and specification of modifications that improve these conditions hence serve to increase 
the reliability of cognition and reduce the risk[333].  
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This approach serves the purpose of ensuring that the proper conclusions are drawn from the analysis, and that 
the necessary changes to the system are correctly specified. CREAM provides the core functionality of these 
services, i.e., the concepts, the classification system, the cognitive models, and the methods. In order to be 
properly used it is necessary to supplement with application specific information, e.g. in the form of values for 
specific performance parameters, detailed operational and process knowledge that defines the context, etc. It is 
based on the principles of context dependent cognitive models (COCOM)[338]. 

GEMS 

GEMS is an error classification scheme developed by Reason that focuses on cognitive factors in human error as 
opposed to environmental or other context-related factors. It is based heavily on Rasmussen’s three major 
categories of errors: skill-based slips and lapses, rule-based mistakes, and knowledge-based mistakes (SRK). GEMS 
is a more general description of the cognitive “black box”, which can be used to address the mechanisms of both 
slips and mistakes. GEMS taxonomy of error types is a useful method to assess cognitive determinants in complex 
technological environments [338, 339]. 

PRA 

PRA is actually an integration of FMEA, fault tree analysis, and other techniques to assess the potential for failure 
and to help find ways to reduce risk. It involves the development of models that defines the response of systems 
and their associated participants to error initiating events. Additional models are generated to identify the 
contributing failure modes required to cause the error mitigating systems to fail. Each component failure mode is 
represented as an individual “basic event” in the systems models. Estimates of risk are obtained by propagating 
the uncertainty distributions for each of the parameters through the PRA models [338].  PRA is used extensively in 
aviation, nuclear, healthcare and other industries [340-342]. 

HFACS 

HFACS is a system to categorize both the latent and immediate factors that have been identified in errors, 
originally aviation accidents. Its purpose is to provide a framework for use in error analysis and as a tool for error 
accident trends. HFACS use four levels of failure including (1) unsafe acts, (2) preconditions for unsafe acts, (3) 
unsafe supervision, and (4) organizational or cultural influences. HFACS permits the analyst to identify specific 
types of human error at various levels in the organizational hierarchy [343]. 

Advantage of HFACS includes consideration that although designed originally for use within military aviation, 
HFACS has been shown to be effective for the identification and analysis of in other areas as well. 2) Permits the 
analyst to identify specific types of human error at various levels in the organizational hierarchy. 3) May be used 
after an event has occurred. 

HFACS has several disadvantages.  It is similar to other HRA tools in that it can be labor intensive and dependent on 
the availability of detailed quality data.  Its’ use can be restricted because it requires knowledgeable human factors 
safety analysts to use.  Finally, it relies on the overt actions and sequence of actions of the operator, supervisor, or 
manager rather than the deliberations (the intentions and expectations) that underlay them [344]. 

Agent Based Modeling Systems 

An Agent Based Modeling System (ABMS), also known as agent-based systems (ABS), or multi agent modeling 
systems, is a relative newcomer to modeling and simulation. ABMS is an approach to modeling systems comprised 
of interacting autonomous agents. Computational advances make possible a growing number of agent-based 
applications across many fields. Applications include modeling agent behavior in the stock market and supply 
chains, to predicting the spread of epidemics and the threat of bio-warfare, from modeling the growth and decline 
of ancient civilizations to modeling the complexities of the human immune system, and many more [345, 346]. 
 
In the case of application of ABM to this research, the interest is to assess if a complex system like MA can 
effectively be modeled.  Macal et al considers how ABM can model a system that incorporates difficult to simulate 
attributes like human behavior, the collective effects of agents (agent interaction), and emergent behavior [346]. 
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While research and application of ABMS in healthcare is becoming more widespread, its application to medical 
error and specifically errors related to the administration of medication is modest at best.  Of the research that 
exists, it appears to be focused in narrow areas of application.  Santos has developed an architecture for an ABM 
that supports doctors’ decisions by “guaranteeing that all required clinical data is available and capable of 
predicting the patients’ condition” over the course of the next hour.  Santos, in this referenced paper, provides a 
high-level description of how an ABM might be sued for this application but falls short of describing the 
implementation of a system [347]. 

Similar in concept is the application of ABM to risk assessment.  While most risk assessment approaches use a 
linear approach, considering each risk at a time, an agent-based approach allows the simultaneous and dynamic 
consideration of risk.  The use of ABM for risk assessment of routine clinical processes was explored by Wobcke et 
al [348].  In a more general example, Bonabeau describes the application of ABM for simulating humans systems 
[349].  More specifically he considers real-world application including organizational simulation along with several 
other uses.   
 
Somewhat further afield from medical application is the use of ABM to model supply-chain risk.  That said, the 
ABM of supply chain appears to have some similarities to the application of MAE simulation.  Notably there are 
various interactions that are non-linear and interactive (networked) and the errors in many instances are a 
function of external influences and information flows [350]. 
 
ABMs specifically considering Medication Errors are quite limited.  Clancy explored the concept of complex 
systems in the context of nursing including consideration of medication errors.  While modeling approaches such 
as ABM and Systems Dynamics are discussed, specific applications are not developed [351]. 
 
 A preliminary study by Vasquez-Velez used NetLogo to construct an ABM attempting to model the influence of 
nurse behavior on medication administration.  A simple model was developed that demonstrated nurse 
interaction, nurse multi-tasking and interruption.  The study of MAE was not noted in this study [352]. 
 
Considerations for which ABMS might be appropriate are27: 

• When there are decisions and behaviors that can be defined discretely (with boundaries) 

• When it is important that agents adapt and change their behaviors 

• When it is important that agents learn and engage in dynamic strategic behaviors 

• When it is important that agents have a dynamic relationship with other agents, and agent relationships 
form and dissolve 

• When it is important that agents form organizations, and adaptation and learning are important at the 
organization level 

• When it is important that agents have a spatial component to their behaviors and interactions 

• When the past is no predictor of the future 

• When scaling-up to arbitrary levels is important 

• When process structural change needs to be a result of the model, rather than a model input 
 

The list above overlays directly with the operations of hospitals and clinics.  Whereas many of the other simulation 
and modeling techniques have difficulty in modeling hospitals or clinics at the systems levels, ABMS offer the 
advantage of being directly applicable to them. 

Sibbel et. al. describes how ABMS might be applied in the hospital setting.  They outline the various factors in 
consideration of application of simulation in this environment and state that ABMS is an ideal approach for dealing 
with the unique issues facing hospital operations simulation.  The authors discuss how the model could be applied, 

                                                                 
27 ( Macal, L., North, M., Tutorial on Agent-Based Modeling and Simulations Part 2: How to Model with Agents, Proceedings of the 2006 Winter 

Simulation Conference ) 

 



www.manaraa.com

82 
 

however, but do not apply such a model.  Herrler et. al. discusses the application of ABMS to scheduling and 
provides an example.  

As a summary, Mustafee et. al. prepared a profile of literature in HC simulation.  They discussed the methodology 
of their article selection and review techniques.  The simulation types they considered were Markov Chains (MCS), 
Discrete Event Simulation (DES), ABS and System Dynamics (SD).  Their assessment, fortunately for me, is in 
lockstep with this response.  A brief summary follows: 

• MCS: A main approach used in HC overall with the applications mainly in the areas of clinical science (e.g. 
treatments, drug results, prognosis, etc.).  About 25% of the papers they reviewed had something to do 
with non-clinical operations such as the cost-effectiveness of competing technologies or HC strategies 

• DES: They found this approach well suited to problems to areas of interest to this author (increasing 
efficiency of operations).  They state that DES provides more insight in the area of health economics than 
MCS. 

• SD: This is more frequently used to model at a more top-level or policy level 

• ABS/ABM:   This approach is not as widespread as the others. 
 

ABM Building Blocks 

There are a variety of perspectives on the building blocks that make up ABMs.  Wall views ABMs as having a core 
of three building blocks (1) the agents, (2) the environment in which the agents reside, and (3) interactions among 
the agents [353].  This can be expanded to include time, rules, properties, actions, goals, beliefs, policies, 
messages, mental models, and states.  Figure 2. 26 represents a more comprehensive view of the building blocks 
contributing to the structure of ABMs [354]. 

The following provides a brief description of many of the characteristics of ABMS28: 

• Self-explaining: an intelligent system can explain how it came to a certain conclusion that led to the 
observed reaction of the system.  

• Emergent behavior: behavior of a system that does not depend on its individual parts, but on their 
relationships to one another. 

• Non-linear: The interactions that occur in AB models are inherently non-linear meaning that they are not 
inherently or consistently predictable. Additionally, non-linear feedback loops exist between micro and 
macro levels. 

• Robust: Slight changes in the environment do not lead to a failure.  

• Fault tolerant: Even when some parts are broken, the system can still function. This characteristic may 
include the concepts of self-evaluation and repair.  

• Adaptive: A system can adapt to a new environment that may be significantly different from the original 
environment.  

• Self-organizing: Intelligent systems are able to find a way to organize themselves to optimize their tasks 
without an internal or external authority. The structure is discovered by the systems, not programmed by 
their developers.  

• Deductive: Based on a set of axioms or general knowledge, intelligent systems can derive new knowledge 
for a particular case.  

• Learning: Intelligence-based systems are able to learn. They not only learn from their mistakes, they also 
learn from success and the communication thereof with others.  

                                                                 

28 Source: http://www.ck12.org/section/Introduction-%3A%3Aof%3A%3A-Agent-based-Modeling-%3A%3Aof%3A%3A-CK-12-Modeling-
and-Simulation-for-High-School-Teachers%3A-Principles-Problems-and-Lesson-Plans/ 
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• Cooperative: Intelligent systems work together with others to solve a problem.  

• Autonomous: A system is able to continue to pursue its objectives without human guidance, even in 
unfriendly environments.  

• Agile: Intelligent systems can rapidly and efficiently adapt to changes in the environment.  

Agents will to one degree or another have the following functionality: 

• Perception-The agent receives signals from his environment based on the links or sensor it has.  It 
processes this information using the rules to interpret the input signal.  The agent can be designed to 
learn, so, with more and more observation its behavior or interaction with the environment can adapt – 
and exchange of results with other agents that do the same – the closer the perception gets to the real 
situation. 

• Sense Making-As noted in Perception, in order for observations to make sense, they need to be mapped 
to an internal representation. The internal representation is the picture the agent has about itself within 
the environment it is in (the situated environment). The internal representation does not have to be 
complete or can be “wrong”. It is possible that the agent only uses a limited set of attributes to capture 
observations, such as "calculates dose" or "does not calculate dose," as a Boolean parameter that cannot 
capture values and accuracy. Sense making can also be fuzzy in the sense of interpreting different values 
under different conditions. 

• Memory-the rules and algorithms that define how sense making and later decision-making are done are 
stored in the memory. Short-term and long-term memories and even forgetfulness (which is especially 
relevant if an agent were designed to be Tom Berg), can be modelled. The memory domain is the 
repository for all information needed for the agent to perform the tasks and includes all forms of memory 
ranging from data to behavior. 

• Communications-Agents can interact and share information:  they share results with agents or agent 
types. Agents can communicate directly or influence another agent through behavior (including proximity, 
actions, or physical interaction).  

• Decision Making: -Agents can support reactive as well as proactive methods. If-then rules or complex 
decision algorithms based on plans, goals, and value systems can be used. Decision making can result in 
actions including more information seeking. 

• Action- The agent can take action based on its decision-making function and these actions can influence 
the situated environment. This includes the agent moving itself, as well as acting on active and passive 
objects including other agents.   The action can have a feedback effect on the agent taking the action. 

• Adaptation-Agents can learn and adapt; this includes both behavioral change as well as a change in 
physical attributes.  

• Cognition: Agents can interpret a specific environment and process the information it provides through 
various “filters” or with different perceptions.  This filters or perceptions can be different depending on 
the conditions in the specific environment. 

 

ABM Building Elements 

Agent - Agents are the heart of ABMs.  They, among other things, are autonomous, decision-making entities with 
goals and the ability to interact with their environment and other agents.  Agents are considered to be 
autonomous because their actions are not determined directly by a central function, although, they can interact 
with a central function that they have some independence from.  As noted, the agent receives information from 
their environments and other agents and they react to, and, interact with this information.   Agents have the ability 
to pro-actively initiate actions in order to achieve their goals/objectives.  Figure 2.27 stylizes the functions of an 
agent including its functions, inputs, outputs and interactions. 
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Figure 2.26: Diagram of building blocks (or features) of ABMs 

 

29 
Figure 2.27: Architecture framework for agents30 

                                                                 
29 Images included under title 17 section 107 U.S. Copyright Law Fair Use Doctrine as educational material distributed for use without profit.    
Modified from source: http://www.ck12.org/section/Elements-of-Agent-based-Models/ 
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As noted previously, an agent is defined as an object that can take action.  They can represent individuals, groups 
of individuals, inanimate objects such as machines or elements such as investments or projects.  Agents differ in 
their characteristics, that is, they are heterogeneous.  They can show differences with respect to most any type of 
dimension such as knowledge, objectives, rules, or abilities.   
 
Environment - The environment of an ABM characterizes the tasks or problems the agents operate within: the 
environment represents the global constraints and, “rules of engagement” the agents have when attempting to 
fulfill their tasks.  At the risk of being somewhat metaphysical, the environment can be a physical or geographic 
space, or, a conceptual space which is somewhat harder to comprehend (at least for me). 

Hammond states the Environment in an ABM can [355]: 

• Range from simple to relatively abstract 

• Contain “agent types” itself with their own properties, actions and rules 

• Can change over time for example as a result of agent action or from exogenous drivers such as policy 
change. 
 

The Environment is the virtual world in which the agents act as simply stated by Gilbert.  As noted previously, the 
Environment may be geographic or spatially explicit or using some other feature such as knowledge.  The location 
of agents can be defined by various means such as coordinates or relative positions based on proximity to other 
agents in a network [356]. 
 
Time - Time is a core element in dynamic simulation.  Simulation approaches like ABM have a fundamental unit of 
time that represents one cycle of the simulation.  This is often referred to as iteration.  Consideration for the time 
component includes [355]: 

• Calibration to some unit of measures e.g. real-world time or something more abstract (e.g. dog years, 
which would be easy to adjust for vs. model of chronic disease incidence driven by smoking or a model of 
opinion-change dynamics may require more work to calibrate[357]); 

• Potential involvement of multiple distinct speeds e.g. the time change of a patient’s health vs the spread 
of a virus through the population, vs. the mutation of the virus; 

• Defining the units (and rate of change) for the rules, actions and changes in agent properties or 
environment. 
 

Rules – The behavior of agents is conditioned on their rules.  Rules are the central drivers of the dynamics of the 
model and define how agents choose actions, modify properties and interact with other agents and their 
environment.  In the simplest sense, rules can be thought of as “if-then” statements, e.g. “if age > 18, then able to 
vote”.  Note that properties affect the rules, serving as their input.  Rules can also be dependent on time and may 
involve learning, change or adaptation – e.g. probability of mediation administration error changes for a 
nurse/agent after 100 times of administering a certain medication. 

Rules can vary significantly in complexity ranging from simple statements to subprograms or optimization 
processes or other calculations.  Part of the rule structure can include stochastic and deterministic probabilities.  
Rules can also define the creation, removal or modification of agents.   

Properties - Properties are another core building block of ABMs.  Whereas rules represent the behavior of agents, 
properties reflect the characteristics of individual agents (e.g. age, sex, breed, disease state, wealth, income, 
membership status, functional status (e.g. broken, fixed)).  As noted under Rules, Properties can change over time 
or remain the same (e.g. height as a result of growth over time).  The construct of the model can allow properties 
to either be entirely visible, not visible or only partially visible to other agents.   

States - States are similar in some ways to properties, in that they refer to conditions or status that the agent is 
allowed to be in.  States can be formally represented in the form of a state chart.  A state chart is a “graphical 
state-transition construct based on exchanging messages or events between the system and its environment” 
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[358, 359].  Three key elements of a state chart are the State, the transition and the resulting relationships 
between States.  Figure 2.28 and Figure 2.29 provide a representation of state charts [360, 361]. 

Urban and his colleagues used the PECS reference model (physical. emotion, cognition, social status) for 
construction of human-like agents.  PECS follows to basic principles: 1) it uses component-oriented hierarchical 
modeling which is in essence building the model up from smaller constituent sub elements; 2) using a system-
theoretic approach the model takes on a temporal basis where each internal state of the agent has a set of 
conditions at any point in time and can change as the simulation progresses.  Figure 2.31 [19] illustrates the 
architecture of a PECS agent30.  In our case the nurse will be an operative agent with these features. 

As examples, the nurse agent might be represented as follows: 

• Physical – Experience, knowledge, information state, workload; 

• Emotional – Stress, fear, anxiety, confidence; 

• Cognition – Situational awareness, error recognition, decision making, learning; 

• Social status – Seniority, organizational position, respect. 
Marsella and colleagues used an ABM system, PsychSim, designed specifically as a social simulation tool.  As such, 
it is used to explore individuals and groups and how those interactions can be influenced.   
 
 
 
 

 

Figure 2.28: Description of statechart elements31 

                                                                 
30 The red arrow indicates a line added by the author: it seems like this would be a logical interaction.  Images included under title 17 section 
107 U.S. Copyright Law Fair Use Doctrine as educational material distributed for use without profit.     
31 Images included under title 17 section 107 U.S. Copyright Law Fair Use Doctrine as educational material distributed for use without profit. 
Ref: https://help.anylogic.com/index.jsp?topic=%2Fcom.anylogic.help%2Fhtml%2Fstatecharts%2FStatecharts.html     
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Figure 2.29: State chart for simple manufacturing process32 
 

 

Figure 2.30: Agent based model for the zombie apocalypse. 33 
 

Figure 2.31: PECS agent architecture34 

                                                                 
32 Images included under title 17 section 107 U.S. Copyright Law Fair Use Doctrine as educational material distributed for use without profit.     
33 Images included under title 17 section 107 U.S. Copyright Law Fair Use Doctrine as educational material distributed for use without profit.    
https://www.youtube.com/watch?v=M7PeYyUczh8 
34 The redline was added to indicate an additional interaction not included in the original reference 

The attached video provides a reasonably 
good overview of the elements 
mentioned above (via link on photo 
Figure 2.30). 

https://www.youtube.com/watch?v=X2WO9BiQRv4
https://www.youtube.com/watch?v=M7PeYyUczh8
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A PsychSim starts with a generic agent from which the modeler constructs unique agents that represent groups 
with specific attributes.  Each agent maintains independent beliefs, goals and rules (policies) for achieving those 
goals.  The PsychSim agent has the following elements: State, Actions, Goals, Beliefs, Polices, Messages and Mental 
Models.  The following list maps elements into this research model [362]: 

• State – Patient status, medication, information available, experience, knowledge, capability 

• Actions – Similar to other ABM actions 

• Goals – Safety, rushing/urgency, relieving pain, avoiding criticism/errors, accuracy 

• Beliefs – Assumptions of patient condition, medication assumptions 

• Policies – Similar to rules 

• Messages – information passed from one agent to another (e.g. pain level, corrections, influence 
from family, doctors’ orders 

• Mental Models – This is best described as preconceived notions: a child can’t accurately describe 
pain, Tylenol is not toxic, lab results (information type as an agent) are of little value. 

 
Both PECS and PsychSim provide interesting and potentially valuable architectures for building “humanness” into 
the final ABM simulation.  PsychSim will have the added challenge of being a custom ABM software system that 
does not appear to be currently available.  That said it provides unique insight into constructing emotion and 
cognition into agents. 

Healthcare ABM Behavior Approach 
Considering modeling of human behavior specifically in HC, using ABM, brings in an interesting construct.  Based 
on my effort to date, very little research has been identified during this literature search that relates specifically to 
considering the behavior, specifically cognition, and emotion or mental state of healthcare providers, as part of the 
ABM structure.  A considerable body of work exists on the modeling of patient behaviors at the macro level, such 
as in epidemics, or actions related to healthcare or similar venues [363-365].  

While there are a number of approaches to building human behavior traits into agents [362, 366], the PECS 
approach provides an initial useful structure to design a structure for modeling behavior of healthcare providers – 
including nurses. 

Contributory factors have been studied that influence the error occurrence with nurses.  These include: stress, 
workload, experience, work conditions, familiarity with work area, patient type, slips and lapses, equipment, and 
communication [4, 29, 367].    

Little work has been done to understand the underlying causes of errors by nurses: it could be possible to draw 
analogies on underlying error causes from other areas such as aviation or nuclear facility operations [368-371].  

Extending the PECS model, with only superficial consideration at this point, the general formula is: 

F ≡ transfer function 

Z(tn) ≡ current state 

tn ≡ time 

z(tn+1) ≡ Future/subsequent state 

x(tn) ≡ input 

Z(tn+1) = F(tn , z(tn), x(tn))  

Urban and Schmidt state that the state variable z is not typically directly related to observable behavior function as 
an independent variable.  Dependent variables are constructed that depend on the sate variables that ultimately 
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drive an agent’s behavior.  The relationship between the state variable, z, and the dependent variable, w, can be 
described by a function H [372].  

W(tn+1) ≡ dependent variable influencing behavior derived from the stat variable 

H ≡ function relating state variables and the dependent variable(s) 

W(tn+1) = H(z(tn+1)  

The output function G determines how the new internal state of the agent, defined by the state variables z(tn+1) 
and the dependent variables w(tn+1), is transformed into an externally observable output y(tn+1). 

G ≡ output function that determines expression of the new internal state 

y (tn+1) = G(tn+1, z(tn+1), w(tn+1), x(tn+1))  

The fundamental assumption of PECS is that an agent’s personality is conditioned on the form of F and H, the state 
variable and its function that transitions the state variable to expression respectively. 

The transfer function F modifies the internal state variables of the agent.  This happens either as the result of an 
input from the outside world, or it can be self-generated.  The state variable could be Fatigue, for instance.  This 
state variable could be changed by the external input x, where the agent experiences a longer than normal shift. 

Fatigue(tn+1) = F(Fatigue(tn), Shift-length(tn))  

A different example of a state variable change would be Stress level.  This state variable could change based on 
outside influences or on its own depending on the actions the agent takes 

Stress(tn+1) = F(Stress(tn), Action performed(tn))  

Stress could be constructed not to directly influence the agent’s behavior.  The function H, which relates Stress to 
the drive Workload, acts as a motive.  This means that the state variable Stress is modified by the dependent 
variable Workload. 

Workload(tn+1) = H(Stress(tn+1))  

Two additional points will be mentioned, but they will not be explored here. One is to include “fuzziness” in certain 
state variables that can be “de-fuzzified” by JIT information.  The other point is to use exiting statistical occurrence 
of states to inform the behavior of the agents: in other words, use the likelihood of a state to define its occurrence 
in the agent.  

Lean for MAP 

Considering MA and the associated errors (medication administration error) from the Industrial and Systems 
engineering perspective of Lean and Reliability is surprisingly unique and rare.  A number of studies were identified 
that evaluated the use of lean methodology for medication administration.  One study analyzed intravenous (IV) 
medication orders for 30 days to identify the specific times when medications were changed or discontinued.  The 
researchers performed a value-stream mapping to define the current state and identify efficiency states.  After 
evaluating the value-stream map they performed and optimization, they provided modest improvement as 
measured by wasted doses and cost reductions [373].   
Lean principles have been applied to MAP with some success, although, the application of Lean seems rather lean 
(sorry I couldn’t help myself).  As part of a cooperative effort from the Virginia Mason Medical Center (Seattle), the 
Collaborative Alliance for Nursing Outcomes (CALNOC) Medication Administration Accuracy Quality Study was 
used in combination with Lean quality improvement efforts to address medication administration safety.  The 
effort targeted improving several functions including the medication room layout, applying visual control (Kanban) 
and standardizing nursing work related to MA.  Their efforts concentrated in six safe practice areas: 
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• comparing medication with medication administration record, 

• labeling medication, 

• checking two forms of patient identification, 

• explaining medication to patient, 

• charting medication immediately, and 

• protecting the process from distractions/interruptions. 
 
The result of this effort was a fivefold reduction in MAEs down to 2.8% of all Mas and “safe practice” violations 
decreased from 83/100 doses down to 42/100 doses.  This study covered 18 months; no long-term longitudinal 
data was provided.  This study indicates that Lean process improvements can contribute to decreases in nursing 
medication administration [69]. 

Another approach studied the application of Lean to hospital pharmacy operations and included the perspective of 
nurses.  The study discussed overall error performance and mutual perceptions of the pharmacy and nursing staffs 
and the implementation of various error reducing strategies mostly concentrated around improving information 
flow and communications [70].  

In a modest sized application of lean for IV medications, the authors noted increased performance in terms of the 
delivery of doses dispensed and a decrease in returned items.  There was no discussion of error rates [373]. 

While this is not intended to be a comprehensive literature review of the application of Lean principles for the 
administration of medication by nurses, a fairly extensive search was conducted.  As noted previously, the research 
is scarce for this application.  The reasons for this could be varied including:  efforts are going on in this area but 
they are not finding their way into the research literature, or, little research has been conducted in this area. 

One of the challenges in this area is the difficulty in getting accurate reporting or recording of medication 
administration errors [24, 374, 375].  Not surprisingly the consensus is that MAEs are under-reported and that 
nurses avoid reporting errors due to the perceived repercussions. 

One methodology researchers have used is having observers monitor nurse MA activities to detect if errors occur.  
This appears to provide a reasonably good approach to objectively gather data.  As with other direct observation 
approaches, there can be an effect of the observer on the behavior of the subject being observed.  Another 
challenge is the limit of the breadth of the data being collected, that is, the amount of data being collected is a 
function of the number of observers.  As a result, these types of studies are limited to a relatively few 
organizations in any given study [142, 375-378].   

Information System of MAP 

If one critically assesses what a nurse processes during the MAP, the conclusion would be information.  Consider 
the administration of medication as a production process with the finished product being the successful delivery of 
the correct medication in the right dose to the right patient.   

One can envision an assembly line, where at each station along the assembly line another component of 
information is added.  This information work in process continues until, if all goes well, a complete information 
product is assembled to ensure correct medication administration (Figure 2.32). 

It would be naïve to assume that by simply addressing the issues around information that it would solve the issues 
with MAE and the efficiency challenges with the MAP.  However, by addressing the issues with information, it 
provides the foundation for addressing the surround challenges such as timeliness of medications being available, 
changing medication orders, impact of procedures, work interruptions, etc.  To be clear, there are many factors 
that affect the MAP beyond information, however, by treating MAP as a dynamic information system, the MAP 
should be able to adapt to change from other systems based on the input of Just-in-time information (i.e. Kanban).  
The key to providing benefit to the nurse and developing a truly functional system is to decrease the nurses’ 
workload, make it easy to use and to have most of the operations transparent. 
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Figure 2.32: Infographic of the MAP and related information flow  

 

Complex Adaptive Systems 

Complex Adaptive Systems (CAS) have direct applicability to the study of processes and systems in healthcare and 
are a core concept in ABMs.  CAS are part of the broader field of study of complexity theory also known as 
complexity science. Complexity science is an approach to studying systems representing a collection of concepts, 
tools and methods that takes advantage of combining a spectrum of disciplines including social sciences, 
mathematics, computer science, and systems engineering[379].   
 
While the underpinnings of the study of complex systems go back many years, the coalescing of the concept of 
complex systems occurred in the 1980s-1990s.  The Santa Fe Institute, an organization that focuses on the study of 
complex systems defines complex systems and complex adaptive systems as follows35.  

Complex system 
  

A system composed of a large number of interacting components, without central control, whose 
emergent ``global'' behavior---described in terms of dynamics, information processing, and/or adaptation-
--is more complex than can be explained or predicted from understanding the sum of the behavior of the 
individual components. 

 
Complex adaptive system 

  
A complex, nonlinear, interactive system which has the ability to adapt to a changing environment. Such 
systems are characterized by the potential for the emergence of new structure with new properties. 
Complex adaptive systems (CASs) can evolve by random mutation, self-organization, the transformation 
of their internal models of the environment, and natural selection. Examples include living organisms, the 

                                                                 
35 https://www.santafe.edu/engage/learn/resources/complexity-glossary (Date Accessed: June 23, 2018) 

 

https://www.santafe.edu/engage/learn/resources/complexity-glossary
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nervous system, the immune system, the economy, corporations, and societies. In a CAS, semi-
autonomous agents interact according to certain rules, evolving to maximize some measure like fitness to 
their environment. 
 

Characteristics of CAS, not surprisingly, align with ABMs:  ABMs are a software embodiment of CAS.  The 
characteristics of CAS are noted below. 

• Emergence – The enacting of lo-level rules among agents to create entirely new properties and behaviors 
with no single entity directing and no way to completely foresee the new properties from what is known 
of the constituents alone[380, 381]. 

• Co-evolution – The phenomena of the interplay of mutual changes of entities within the system.  The 
environment and entities interact and influence behavior and change with the intent for achieving best 
fit. 

• Connectivity – Entities within a CAS have the ability to share messaging, information, interactions through 
connections that can be permanent or temporary. 

• Nested Systems – Systems can be embedded within other systems either on a hierarchical basis or on a 
non-hierarchical basis.  This is often referred to as a system of systems 

• Simple rules – Elements within a CAS often follow simple rules for behavior such as birds maintaining a 
certain distance during flocking behavior. 

• Sub-optimal – CAS can work towards a common purpose, but, dynamics and competing needs thwart 
ideally optimized performance. 

• Requisite variety – By its nature a CAS is made of individual entities with unique variation at the 
subsystem or system level. 

• Self-Organizing – Entities may coordinate as a group or subgroups for example flocking behavior. 

• Edge of chaos – System exists in a range of conditions ranging from chaos to equilibrium as defined by the 
level of order in the system, and is a “region of bounded instability that engenders a constant dynamic 
interplay between order and disorder”[382]. 

 
Many have considered healthcare as a CAS.  Begun generally explores the application of CAS to healthcare and 
highlights the similarities of the properties of CAS, particularly the consideration of emergence and the structure of 
healthcare as represented by networks [383].  Rouse takes another approach by considering incentives and 
information as the two core elements of healthcare as a CAS.  He makes the points that hierarchical decomposition 
does not work for CAS and that complex adaptive systems self-organize, and as a result an organizational design 
cannot be imposed. This supports the property of co-evolution of CAS [384].  Sturmberg et.al. provides a 
visualization of CAS in healthcare as a vortex  to understand the CAS nature of healthcare systems and to illustrate 
the interaction of the system-of systems that characterizes healthcare [385]. 
 
CAS have been considered with respect to nursing.  Chaffee and McNeill consider CAS at a broad level and 
constructs a metaparadigm view of nursing as a CAS.  They start at the highest level of nursing and parse the 
system down to the down to basic subsystem level of nursing [386].   Clancy, Effkin and Pesut considers the 
applications of complex systems theory in nursing education, research and practice and explores areas of 
application of CAS n the environment of nursing care [387]. 
 
CAS has been used at various levels of application to understand operations and performance by nurses.  The 
prevention of surgical site infection by using a CAS approach was studied by Sitterding [388].  A study of ED 
operations found that a CAS approach was beneficial in understanding the delivery of integrated care because “the 
processes of categorization, diagnosis and discharge are primarily about the linkages between services, and the 
communication and negotiation required to enact those linkages, however imperfectly they occur in practice” 
[389].  CAS was applied to the challenge of nurses in daily documentation tasks.  This study reports 13% to 28% of 
total nurse shift time is spent documenting.  The authors studied the documentation of nursing care a CAS 
approach and then analyzed the benefit of using a standardized nursing language. A case study of a nursing 
improves nurse and system performance in care planning by adopting a standardized nursing language was 
performed [390]. 
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A brief overview of CAS in nursing and an associated case study cautions that CAS should be used cautiously and 
not overextended beyond reasonable limits and encourages considering CAS at local levels (e.g. wards and teams) 
as opposed to large systems such as a National Health System [391].  While there are some merits to the author’s 
point, they seem to be missing the ability of systems engineering to accommodate broader and more generalized 
systems via formal systems engineering tools and approaches such as systems dynamics. 
 
While references are made to medication administration being complex and that it is a complex system few 
specific references were identified that explores the medication administration process as a complex adaptive 
system.  The under reporting or lack of reporting of medication administration errors was identified as a highly 
complex responsibility in separate studies by Lane and Wakefield [392, 393]. Patterson and Cook describe 
medication in the acute care setting as a complex system [33], and references the complex interconnected nature 
of the medication administration process [394].  The behavior of nurses during the MAP and their use of barcoding 
was briefly considered by Matlow [395].  Ebright used medication administration and nurse decision making as an 
example of a CAS [396]. 
 
Much has been written on CAS in healthcare.  The literature appears to remain largely at the conceptual level of 
considering CAS and systems engineering methodologies to the study of healthcare.  As noted earlier there has 
been some research done on using approaches like systems dynamics and ABM to model the healthcare. 
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Chapter 3 

Methods and Approach 

Overview 

There are two fundamental parts to this research, a clinical trial, or case study measuring the effect of JIT 
information on the occurrence of medication administration error in a simulated environment and developing an 
agent-based computer simulation to determine if such a simulation can effectively model the effect of injecting 
information into the medication administration process in an attempt to mitigate Medication Administration error. 

There are four components to the clinical trial.  The first was the use of the Health Innovation Technology 
Simulation (HITS) Laboratory at the University of Tennessee- Knoxville.  The second was the development of a 
teaching simulation scenario using the HITS laboratory equipment and facilities. The third was engaging student 
nurses as research subjects.  The forth was the development of a smartphone app that would provide information 
to the student nurses while they were student nurses. 

Student nurses were selected as an element of this study for a number of reasons: 

• Use of student nurses provided a readily available pool of interested research subjects. 

• They were a relatively uniform group in terms of education and nursing experience at approximately the 
same point in their academic progression. 

• As part of their normal curriculum, student nurses participate in training simulations at the HITS lab.  
Treating this as a training simulation fit easily into their coursework and did not require extra time or work 
for the students. 

• They have significant familiarity with the use of a smartphone as source for information and were 
amenable to using the technology. 

• The role of the student was as a mechanism to assess the performance of JIT information on medication 
error occurrence.  

 
The HITS lab provided a controlled environment for running the training simulations, as a result, extraneous events 
that would have occurred in an actual clinical environment were not a concern.    The patient (mannequin) was 
consistent in that the behavior, condition and other features were the same among each simulation run.  The 
room and environment (equipment, supplies, EMR/MAR interface, etc.) were the same for each simulation run. 

Subjects 

Subjects were comprised of University of Tennessee senior year nursing students participating in standard 
simulation training as part of their required curriculum. Nursing students go through a number of training 
simulations using instrumented mannequins.   There were 93 nursing students used in the study over the course of 
two semesters.  These students comprise the entire class for each semester; as such there are no other selection 
criteria for the participant other than being enrolled in the class.  In other words, participation in the study was 
open to all students within the class participating in the simulation.  The study was designed to use the entire 
complement of students from the class, approximately 45 students to be part of the study in the fall semester of 
2015 and a similar number in the spring semester of 2016.  The students in the fall semester served as the control 
group.  These students will participate in the normal training simulation without using the smartphone app. Their 
performance was observed during their simulation class and the key performance indicators noted.  The student 
nurses participating in the spring semester trial used their personal smart phones, to provide real-time information 
based on the student’s query via the app that was developed for this study.  The total time for each student to 
participate in the simulation was nominally between 6 and 15 minutes.    The students using the device had an 
additional 20-30-minute tutorial and familiarization prior to the simulation in order to learn how to use the JIT. 

The University of Tennessee Institutional Review Board was engaged and a human research proposal was 
submitted and approved to use nursing students as research subjects for this part of research.  All protocols and 
guidance suggested by the IRB were followed and informed consent was obtained by each student that 
participated in the study. No personal information, regarding the research subjects, was required as part of this 
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study nor was any of the performance information linked to individual students as it relates to this study.  The 
option on whether they do or do not want to participate in this study prior to the start of the simulation was 
provided to the students and a briefing on the study was also be provided.   Compensation will not be provided to 
the students as part of the study nor will it have an impact on their grade. 

The selection of participants was equitable because: 

• All students within the class were invited to participate 

• The control and experimental participants are separated by semesters thus making both groups uniform 

• The experience and education level of the student nurses is approximately the same limiting concern for 
biased performance  

 

Clinical Trial/Case Study Methods and Procedures 

Student nurses perform a number of training simulations using instrumented mannequins as part of their normal 
curriculum.  As noted previously, we used senior of Tennessee University nursing students who were in a class 
(N404) where simulated training was part of the course curriculum.  The instructors prepared and observed the 
students in this study in the same way that they normally would.  They briefed the students on the scenario for the 
simulation and provided them relevant background information that prepared them with background facts and 
information.  A simulation scenario that provides the student the various options in decision making and care 
execution while using JIT information was developed by the CON in conjunction with the researcher to support this 
study.  This scenario is typical of other scenarios used by the simulation facility.   No personal information of 
students was collected and all performance information was de-identified.   

Two groups were decided upon: the control group, and the intervention group. The control group (fall semester 
2015 nursing students) went through the simulation but did not use the JIT app.  The intervention group (spring 
semester 2016) went through the simulation using the app via their smartphones, with each member of the group 
participating in the simulation.  The experimental group was broken into two separate groups; the Pre-training 
intervention group and the Post-training intervention group.  The purpose of the Pre and Post-training subgroups 
was for the ability to control the familiarity, or lack thereof, of using the information app. 

Both the pre-training and Post-training intervention groups were provided a tutorial for the app which included a 
10-15-minute demo done by the researcher, followed by the students using the devices to familiarize themselves 
with the functions for another 10-15 minutes.  In addition, the Post-training group was asked to complete a 
worksheet that had questions requiring use of the app.  Both the demo and worksheet used a training app that 
looked identical to the simulation app but had a different patient with different information such as medications, 
lab values, contraindications, history, and so on. 

The app was designed to provide similar information as the other resources that are available to the students in 
the simulation.  The difference between the app and the EMR/MAR DocuCare based resource available via the 
desktop system in the patient room, is that the app provides the information in a concise and simplified manner 
while the EMR/MAR is more involved36.  It also highlights key information that is temporally germane to the 
nurses’ decision-making process consistent with the concept of JIT information. 

Two to three students participated in each scenario (i.e. each simulation is done as a small group). All student 
performances were observed at the individual level and their performance cataloged. All data was de-identified at 
the end of the scenario by removing any identifiable characteristics. Data was then collected via researcher notes 
and transferred to a computer.  The Key Performance Indicators are based on the decision tree for the scenario 
and are as follows: 
 
 
 

                                                                 
36 The EMR/MAR DocuCare system is a robust and complex medical records system with a comprehensive compilation of patient information 
and reference material similar to full EMR/MAR system found in hospital settings 
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• Total Errors committed 
• Medication administered correctly 
• Specific errors committed 
• Time for simulation completion 
• Use of External information resources (e.g. DocuCare –A simulated medical records system provided as 

part of the simulation system, available drug reference manuals, medication labels) 
• Utilization of the JIT smartphone app 

 
For the purposes of evaluation errors defined as not executing the key elements of the MAP process including: 

• Failure in checking the MAR correctly 

• Failure in checking the medication type correctly 

• Failure in checking the patient ID 

• Failure to validate the correct route 

• Failure in checking the dosage correctly 

• Incorrect checking the time for medication administration 

• In appropriate administration of medication 

Scenario Development Methodology 

The College of Nursing faculty and HITS staff developed a specific simulation scenario for this research (see 
appendix 2 for staff background and experience).  The faculty, staff and researcher developed the key objectives 
that met the needs of the training and research aspects for both the students and the researcher.  These 
objectives included a scenario with key aspects of the MAP; ability to inject information as the intervention into 
the scenario; ability to conduct the simulation with the students in 15 minutes or less; ensured repeatability and a 
controlled environment; met the skills and capabilities of the students; provided a realistic experience for the 
students; provided a means to measure subject performance objectively relative to the MAP; errors could be 
scripted in to the scenario to assess the subject’s performance and critical thinking. 

Based on the experience and judgement of the faculty and HITS staff, a pediatric simulation that met all of the 
study and class objectives was developed.  A pediatric medication administration scenario was developed because 
it required the need for accurate dose calculation; limited the need for nurse-patient information; allowed a 
surrogate information source (the child’s mother) to help guide the execution of the simulation; and realistic 
potential medication administration errors could be crafted into the scenario with limited medications listed in the 
MAR, and; the scenario created conditions that could lead to typical medication administration errors including 
dose calculation errors, wrong medication, not checking the patient records or MAR, wrong medication route and 
not checking the patient identification. 

The HITS staff has had specific training and extensive experience in developing training simulation using the 
mannequins.  They use a standardized approach to develop the scenarios that includes the needs of the faculty 
teaching the course, the objectives of the course curricula and other factors such as the research objectives of this 
portion of the research.  Appendix 2 provides the developmental outline of the training scenario. 

The key aspect of this training simulation revolves around the dosing of acetaminophen, which is susceptible to 
overdosing and particularly toxic in chronic overdosing.   

Scenario Description 

The training simulation scenario consisted of a six-year-old 22kg pediatric patient named Frank that arrived at the 
emergency department (ED) of a local hospital.  The following excerpt from the final scenario documentation 
highlights the key points.  This briefing is between a nurse going off-shift and the nurse coming on shift that will be 
caring for the patient, Frank. 

Frank is 6 y/o male who was brought in yesterday to the ED by Mom and Dad after falling off the 
trampoline at home three days ago. His parents did not realize the severity of the injury and thought he 
just had a bad bruise. They treated his injury with elevation, ice and Tylenol for pain. X-ray revealed a 
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right tibia/fibula fracture. Pt had surgery yesterday to repair the fracture. Frank has a 22G angiocath in his 
right AC with D5 1/2NS with 20KCL infusing at 55 ml/hr. He has been getting scheduled morphine q2 
hours and Tylenol q4hr PRN for breakthrough pain. Frank is complaining of pain. His mom just called right 
before report and I have not had a chance to assess his pain yet. I gave him his morphine an hour ago but 
he hasn’t had Tylenol in 6 hours. Labs were drawn last night and they are in the computer but I haven’t 
look at them yet.  

The key points of this scenario background are that: 

• Frank is a six-year old pediatric patient 

• He has been given Tylenol (acetaminophen or ACA) by his parents for pain prior to arriving at the ED 

• He has just had surgery to repair the broken bones in his lower right leg 

• He is on medications to manage pain including Lortab every two hours and Tylenol every four hours 

• Frank received his Lortab (morphine and acetaminophen (ACA) combination) dose an hour ago but has 
not received his Tylenol 

• Frank’s pain level is unknown at the time of this briefing, this will determine if pain medication will be 
needed 

• Recent laboratory results are available but have not yet been reviewed 
 
The students read the brief history above at the start of the simulation.  There is a standard “Mom” present played 
by one of the HITS staff or CON faculty.  The mom’s interactions with the students are scripted for consistency.  
The mom will inform the students that she had been giving the patient Tylenol in a largely unconstrained fashion 
while at home just prior to entry into the hospital.  That is, she had been significantly overdosing the child. 
If the student(s) query the MAR (DocuCare), they will find that the patient has been prescribed Lortab, along with 
acetaminophen for breakthrough pain.  An anti-emetic was also ordered but the order was discontinued.  If the 
student does a correct dosing calculation, they will find that the physician has prescribed an over-dose of 
acetaminophen based on use of an incorrect weight.  Additionally, if the student checks the laboratory results for 
the patient, they will find laboratory test values that indicate overdosing from acetaminophen. 

The simulation scenario is complex and has a variety of challenging facets: 

• An overdose amount of acetaminophen was prescribed by the physician based on a wrong weight at the 
time the medication was prescribed. 

• Two medications have the same active substance (Lortab and acetaminophen) creating an instance for 
exceeding the total allowable daily dose of acetaminophen. 

• The patient’s laboratory values indicate an adverse drug event – elevated hepatic laboratory results 
indicate liver damage possibly due to acetaminophen toxicity. 

• The “mom” infers she has been giving the child overdose amounts of acetaminophen after the injury and 
before coming to the hospital. 

• The patient is complaining of symptoms that indicates a drug reaction (nausea), a possible confounding 
situation exists because the child could also be experiencing nausea due to anesthesia from a recent 
surgery, however the nausea related to this should have abated. 

• The nurse should do a weight-based medication dose calculation because this is a pediatric patient. 

• The situation can proceed down a large number of different pathways, having a decision tree of several 
hundreds of nodes.  

 
As the student progresses with the scenario, they will find that the patient has moderate to significant pain from 
the surgery.  The mom will agitate to have the patient get medication quickly since the child is crying and in pain.   
As noted in the scenario detail in appendix 2, the students have an up to date EMR/MAR with all of the patient’s 
vital signs, correct body weight, medication orders, and medication information.  A bound version of a drug 
reference is also available.  There is a bedside computer with a hand-held scanner for validating patient ID, along 
with scanning in medications that are being administered. 
The patient room set up matches that of a typical hospital medical/surgical ward.  One exception is that there is a 
screen at one end of the room that serves as a divider to simulate a medication prep area.  This area has the 
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material needed to prepare medication doses and includes cups, syringes, and med cups or a bottle of Tylenol 
syrup, Tylenol caplets and ibuprofen syrup.  The medication preparation area has a computer for accessing the 
patient records and MAR, a calculator, and medication reference manuals.  The patient room shown in Figure 3. 1 
has multiple video cameras positioned throughout the room.  These cameras provide the ability to visually monitor 
the execution of the scenario from multiple positions within the room.  The rooms also have microphones to allow 
observers to listen to the simulation. 
The patient is an adolescent mannequin capable of representing a six-year-old male (Figure 3. 2).  The mannequin 
is described by the manufacturer as being “designed for skill and scenario-based training and a complete range of 
pediatric scenarios” 37.  While the focus of this scenario is not to use the many functions of this device, the 
students may take vital signs.  The environment is set up so that the patient can vocalize pain and speak.  The 
instructor in the HITS lab control center provides the vocalization of the patient. 

The researcher and HITS staff monitor the execution from the control room (Figure 3. 3). As depicted in the 
associated image (Figure 3.3), the control center provides control of the mannequin, video cameras in the patient 
room, the patient monitors, access and updating of the EMR system.  Observers can watch the execution of the 
simulation unobtrusively, as well as listen via in-room microphones. 

The researcher viewed each of the simulations from the control room.  The simulations were video recorded to 
allow follow-up review.   

 

 

Figure 3. 1: Photos of patient room 

 

 

 

 

 

 

                                                                 
37 Laerdal mannequin description: https://www.laerdal.com/us/products/simulation-training/nursing/nursing-kid/ 
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Figure 3. 2: Photo of Frank, instrumented pediatric mannequin 
 
 

 

 

 

 

 

 

 
Figure 3. 3: Photo of HITS control room used during performance of training simulations 

 

 

Figure 3. 4: Student nurses using app during training scenario 
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Execution of Training Scenario 

At the beginning of the semester, each group of students/test subjects was briefed on the research project 
approximately one month before the simulation at the end of the scheduled class time.  The briefing covered a 
general description of the scope and purpose of the research, they were offered an opportunity to participate in 
the research and provided a copy of the IRB consent form to sign should they be willing to participate in the study. 

Prior to the simulation training event, the researcher met with the instructor and simulation staff to review the 
final simulation scenario and coordinate the pre-simulation instructions, and to plan for the simulation event and 
post-simulation follow-up.  The pre-simulation included instruction by the simulation staff to the students which 
included advising the students not to discuss the simulation event with their classmates in order to ensure the 
education value of the simulation was not comprised and did not affect the integrity of the data generated from 
the research.  It included a high-level overview of the simulation avoiding discussion of the clinical and procedural 
skills required.  A discussion of the research would be reiterated by the researcher, and students that had not 
signed the consent form were provided an opportunity to participate in the research and sign the consent form.  
The students were divided into groups by the instructor based in part on the student’s interest in participating in 
the research.  That is, students who desired not to participate would be placed into the same group or multiple 
groups depending on the number of students not participating in order to avoid potential conflict.  Participating 
students would also be broken up into groups ranging in size from two to three as selected by the HITS faculty. 

On the day of the simulation training, just prior to the start of the simulations, the instructor provided a high level 
over view of the simulation event without providing detail on the actual scenario.  Specific details of the scenario 
were not discussed. 

Immediately upon the completion of the scenario, as determined by the faculty, the students are debriefed as a 
group: this is considered an integral part of the training environment.  The room used for the debriefing was a 
small exam room close to the patient’s room.  The researcher observed the debriefing and was able to ask follow-
up questions specific to the research at the end of the simulation debrief. 

The course of the scenario can follow a number of different paths and associated outcomes similar to the decision 
tree in appendix 8.  These paths can range from the nurses simply dispensing the medication per the physician 
order, to not dispensing the medication and calling the physician because of the high hepatic laboratory values.  As 
in a real-world situation, there are multiple approaches that lead to correct or incorrect outcomes.  From a training 
scenario perspective, the nurse would have observed the errors built into the scenario, specifically the incorrect 
dose, the multiple medications with acetaminophen and the high laboratory values, and would then contact the 
physician, and would have provided correct dosing information to the mom. 

The use of the JIT app is intended to determine if providing information in a fashion that could be considered 
easier to assimilate and in a specific timeframe that it was optimum for its purpose and would reduce the 
occurrence of errors.  To this end, we are not measuring optimal outcomes, rather, measuring whether or not we 
decrease the occurrence of errors as measured by app usage and the five rights of medication administration. 

Facilities and Equipment 

As part of their education and training at the University of Tennessee College of Nursing (CON), student nurses 
participate in a number of training simulations to evaluate and improve their skills.  These simulations use 
instrumented, life-like patient care mannequins coupled with control computers that can modify a wide variety of 
parameters including physiologic variables, sound, physical response and manipulation.  The simulations are 
conducted at the Health Innovation and Technology Simulation (HITS) facility on campus at the University of 
Tennessee (http://tntoday.utk.edu/2014/03/27/nursing-enngineering-health-simulation-lab/).   

The simulations take place in a variety of rooms configured as hospital rooms within the HITS lab.  These rooms are 
outfitted with a complete array of hospital furniture and equipment.  The faculty selects the room based upon the 
requirements of the selected scenario.  The rooms also have video cameras that provide the faculty a means for 
unobtrusive observation of the students during the simulation along with two-way audio for listening to the 
students as well as for faculty to provide direction.  The medical equipment, mannequin and video feeds are linked 

http://tntoday.utk.edu/2014/03/27/nursing-enngineering-health-simulation-lab/
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to a separate central observation room apart from the hospital rooms, where the faculty controls the parameters 
of the scenario.  The researcher observed the simulations from this control room. 

App description 

The app was specifically designed to exhibit the features of JIT information.  The design of the app went through 
multiple iterations to ensure ease of use and the optimal visualization of the information.  The design criteria for 
the app is found in Table 3. 1. 

The University of Tennessee College of Communications and Information was used to help with the final design of 
the app format.  Their support was instrumental in meeting the design objectives and ensuring optimal usability of 
the app.   

 

 

Table 3. 1: Criteria for smartphone Just-in-Time information app 

Design Criteria Design Approach 

Easy to read Font size and screen layout optimized, colors used 
to indicate crucial information 

Easy ergonomics for screen manipulation Pages accessible via swipe or buttons at the 
bottom 

Minimal number of screens Limited to three screens that scroll up or down 
and limited to two pages 

Succinct presentation of information Highlighted banners or colors to indicate 
important information.  Only the most recent 
information or changes are presented 

Simplified calculation of medication doses Dose calculators specific to the medication 
ordered, with patient information (e.g. weight) 
already entered 

Easy access Use of a QR code to access the app 

Rapid access to medication information and MAR Specific screens for each of the primary areas: 
patient encounter, MAR and EMR/Lab 

Provides some function as a decision support tool Highlighted lab information and suggestions if 
results are out of normal range 

 

 

While the JIT app plays an important role in assessing what role, if any, JIT information plays in reducing 
medication administration error, the goal of this research is not the development of the app as a tool.  This app 
serves simply as a mechanism to deliver the information in a way that is intended to approximate JIT information.  
The app was evaluated by the CON HITS faculty and staff to assess its functionality, ensure the information in the 
MAR and EMR and that it had appropriate utility for the intended purpose. The JIT app is a web-based application.  
The screens were constructed as web pages. Since the functionality of the app is an information source and not a 
tool to be used in an actual clinical setting, it does not have direct links into the DocuCare system.  That is to say, 
the JIT app is a virtual shell that provides static displays of information, as well as, a means to do medication dose 
calculations; it is not tied to any information system to allow live updates (see appendix 4-5). 

Those student nurses participating in the intervention group were asked to download a QR reader app to allow 
quick access to the JIT app.  The QR reader interprets the QR code, which is the JIT app webpage link hosted on an 
ISE server. 
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The QR code was on the patient’s wrist band hospital ID, as well as on the medication preparation table in the 
patient’s room.  The nurse simply had to scan the QR code and the JIT app with all of the JIT information for that 
patient would load automatically. 

Data Collection and Assimilation 

The data to be collected during the trials was determined by the evaluation of the available research on the study 
of MAE, the training scenario design and guidance by the CON faculty.  Allowance was also made to identify 
emergent data that arose during execution of the trial.  Data includes a control group and 
experimental/intervention/response group.  The experimental group used the JIT app (Figure 3. 4) to access key 
information while performing the scenario. 

The data to be collected prior to beginning the trials included, the occurrence/non-occurrence of events principally 
each of the five rights, use of the MAR, observed near misses, use of the MAE app. 

Population and Sample Size 

There was a total of 38 groups for both semesters.  Eighteen groups were from the first semester and 20 from the 
second semester.  The first semester served as the control group and the second semester as the treatment group.  
The treatment group was divided further into the training group and the experimental group with 11 groups in the 
training cohort and 9 groups in the experimental cohort.  A retrospective power analysis was done to confirm 
appropriate sample sizes using Minitab 18. A conservative estimated standard deviation of 1 (calculated sample 
standard deviation was 0.4) was used along with a difference of 1; a sample size for the cohorts of 8 was calculated 
with a power of 0.81.  For comparison a cohort size of 11 is required to reach a 0.90 power level. 

Computer Simulation of MAP 

The other component of the research effort was the development of a computer simulation that approximated the 
performance or likelihood of error by nurses during the MAP as measured by error occurrence and its potential 
moderation by the injection of information. 

This research effort has constructed a computer model that simulates the medication administration process 
(MAP) performed by nurses in a hospital.  The goal is to have the model reflect the interaction of nurse(s), 
medication(s) and patient(s).  This simulation will consider the generation of potential errors and the effects of a 
possible intervention in the form of JIT information on mitigation of error occurrence. 

Computer simulation and modeling has been performed on a broad array of healthcare topics ranging from 
disease diagnosis and management to nurse staffing models.  Discrete event simulation, Markov models, Bayesian 
networks, agent-based models, decision trees, Monte Carlo simulations, artificial neural nets, and systems 
dynamics models are a representation of the various approaches used in healthcare computer simulation.  Of 
course, there are hybrids and variations of these modeling approaches e.g. hidden Markov models, Monte 
Carlo/Markov models, agent based/Bayesian models, and others. 

For the purposes of our efforts, computer simulation and modeling will be used interchangeably to refer to 
emulating the activities and behaviors of the administration of medication with nurses, mediations and patients 
along with their consequent interactions and resultant outcomes based on use of different states or changing 
operating conditions. 

Each simulation approach has its respective application niche based on several factors 

• The type of data available 

• The desired end-result or objective of the model 

• The attributes of the system being modeled 

• The computer modeling approach that best fits the aspects of medication administration 
 
As a result, the features of the data, and what is trying to be accomplished, drove the final type of modeling 
approach selected. 
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Computer Model Functional Requirements 

The functional requirements for this computer simulation model are a direct function of the aspects and 
considerations of the MAP process.  The available literature on the structure and function of the MAP process, as 
well as, the clinical study performed as part of this research, help to shape the following functional requirements 
of the model. 

• Results and insights from the earlier clinical trial influenced the type of model based on the outcome of 
the trial, the general process flow and outcomes. A key conclusion of the clinical aspect of the research 
was that the order of the sequence of the events was relatively constant and process steps appeared to 
be generally independent of one another. 

• The model should resemble the major aspects of the MAP process and the interaction of the entities 
being modeled with their environment. 

• The various possible entities and their interactions could lead to a particularly complex model. The goal 
will be to limit the complexity of the model to the greatest extent possible in order to focus on the major 
aspects of the MAP process. 

• While the sequence of events in the MAP can in practice occur in any sequence, a sequence that is most 
representative of the standard approach, as described in the literature and clinical guidelines, will be used 
in order to reduce model complexity. 

• It is possible that the outcomes in any given process step could influence the activity in another MAP step; 
this phenomenon has not been found to be addressed in the literature and will not be considered in this 
model.  The outcome of a process step is assumed to be independent of other process steps. 

• The medication administration process is treated as essentially a discrete time random process in the 
model. 

• It is assumed that the process is not recursive, i.e. the nurse would not backtrack in the process of 
delivering a medication. 

• The decisions/actions within the MAP are assumed to be binary (e.g. yes/no, perform/don’t perform). 

• The process is at a minimum a function of the nurse’s behavior, but could also include the medication, 
patient and environmental elements. 

• Each nurse is an individual entity with their own set of unique attributes. 

• Similar to nurses, medications and patients are also unique entities with individual attributes. 

• Emergent behavior, while not expressly designed into the system, is an acceptable outcome. 

• Variability in the number of entities (nurses, patients, medications) and/or their interactions is important. 

• The interaction between agents representing nurses and patients is dynamic and random, the interaction 
between patients and their medications is static. 

• The model is dynamic in the sense that states can change and influence outcomes in other areas. 

• The focus of the modeling effort is on the MAP process, specifically the actions of the nurse.  The 
medication and patient entities relevance are a function of how they affect nurse performance. 

• Measures of interest will have an overall likelihood of error occurrence calculated; the influence of JIT 
information on error occurrence, and the effect of nurse attributes (e.g. experience) on error occurrence.   

• Steps in the MAP process can vary independently, simulating the effects of other independent influences 
on each part of the MAP process. 

• The MAP process combined with its actual method implementation has attributes of process flow, 
network, stochastic, and deterministic activities. 

• The number of patients per nurse and the number of medications per patient can vary between 
simulations. 

• Medications attributes vary in type, difficulty in administering medications and the relative hazard of the 
medication and may have an impact on the possible MAE rate. 

Based on the attributes of the data and the MAP process, three modeling techniques have been considered along 
with their potential advantages and limitations as they relate to this effort. 
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Discrete Event Simulation 

• Based on a series or sequence of events 

• Assumes no change in the system between the events 

• Entities (e.g. patients) may be given individual attributes 

• Performs well for process flow models 

• Accounts for use of resources 

• May be discrete or stochastic 

• More difficult to deal with changes within or among individual entities such as nurses 

Bayesian Network 

• Stochastic 

• Explicit management of uncertainty/tradeoffs 

• A variable is conditionally independent of its non-descendants given its parents (no memory) 

• Singly connected directed acyclic graph (DAG) (no feedback) 

• Incorporates prior knowledge 

• Only as good as the prior knowledge 

• Computationally expensive 

• Requires prior knowledge for each event 

• Can cope with incomplete data sources 

• Belief updates based on receipt of new information 

• Provides a theoretical framework to incorporate expert knowledge (as prior information) 

• Directly applicable to decision theory 

• Not dynamic 

• Potential ubiquity of model structures 

• Difficult to describe individual behavior 

Agent Based Model (ABM) 

• Stochastic/deterministic  

• Can be combined readily with other modeling approaches (e.g. equation-based, Bayesian, Markov, 
Systems Dynamics, etc.) 

• Models at the elemental or individual level 

• Provides insight into causes of emergent phenomena 

• Generally based on the changes of an entity’s state 

• Provides more natural description of the process 

• Possible to model agents making decisions with incomplete knowledge and information 

• Easily accommodates complex interaction among model elements (agents) 

• Accommodates nonlinear behavior, rule-based, "coupling" and discontinuity 

• Allows for direct interaction of model elements 

• Individual behaviors can exhibit, memory, path-dependence, non-Markovian behavior, learning and 
adaptation 

• Well suited for activity -based modeling 

• Incorporates expert judgment for validation and calibration 

• Supports heterogeneity of elements as opposed to aggregate models 
 

At the highest level, the model will emulate the performance of the nurse during the MAP.  As part of this 
consideration it is contemplated that the model will include factors that influence nurse performance during the 
medication process including: interruptions, experience, adherence to procedures, dose calculation skills, 
medication type, fatigue, work load, shift change, clinical or procedural errors in medication administration steps.  
Review of the data, observation of the MAP scenarios (student nurse simulation), and likelihood of occurrence 
based on observation and the literature and model complexity will provide the criteria for down selecting the error 
factors to a more tractable subset of factors to be used in the model. 
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Based on the attributes of the data and MAP, ABM was ultimately selected to be the most suitable modeling 
approach.  Several modeling approaches were considered in the early stages of model development in order to 
evaluate the best fit of the simulation approach with the data and desired functions of the model.  ABM was 
selected because of the fit of the operational characteristics of ABM with the actual MAP process and the goals of 
the research.  The notional comparative assessment, provided in Table 3. 2, contrasts the characteristics of 
modeling approaches potentially suitable for the nurse MAP process modelling effort.   
 
The considerations for which ABM are appropriate include38: 

• When there are decisions and behaviors that can be defined discretely (with boundaries) 

• When it is important that agents adapt and change their behaviors 

• When it is important that agents learn and engage in dynamic strategic behaviors 

• When it is important that agents have a dynamic relationship with other agents, and agent relationships 
form and dissolve 

• When it is important that agents form organizations, adaptation and learning at the organization level 

• When it is important that agents have a spatial component to their behaviors and interactions 

• When the past is no predictor of the future 

• When scaling-up to arbitrary levels is important 

• When process structural change needs to be a result of the model, rather than a model input 
 
 

Table 3. 2: Comparison of computer modeling simulation approaches 

H: High, M: Medium, L: Low Agent Based Bayesian 
Network 

Systems 
Dynamics 

Discrete Event 

Dynamic H H H M 

Low level of abstraction H M L H 

Flexibility H M M M 

Multiple environments H M H M 

Process based H M L H 

Scalability H L H M 

Multiple autonomous entity types H L L L 

Ease of application H L M H 

Effective for moderately complex models H M M H 

 

 

 

 

 

 

                                                                 
38 ( Macal, L., North, M., Tutorial on Agent-Based Modeling and Simulations Part 2: How to Model with Agents, Proceedings of the 2006 Winter 

Simulation Conference) 
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ABM Model Design and Construction 

The key elements of an ABM include: 

• Agents 

• Time 

• Environment 

• Rules 

• Properties 

• States 

Agents 

Three agents were defined for the model: nurses, patients and medications.  Other agent types were considered as 
well, such as information, other health providers, and policies.  While adding these certainly would have 
contributed to the overall complexity and might have added to the fidelity of the model, the decision was made to 
limit the number of agent types in order to have a better understanding of the functioning of the primary agent 
types.  
 
These agents interact either directly or indirectly among other agent types based on their respective functions 
(rules) and properties (attributes).  That is nurses do not interact with nor are they influenced by other nurse 
agents but do interact with patients and/or medications.  This is the same for patient-patient interactions and 
medication-medication agent interactions. 

Agents are assigned attributes to help determine how they function (Table 3. 3).  For this model, the types of 
attributes are set as part of the structure of the model.  However, the value or degree of the impact that the 
attribute can change as the model runs depending on the function of the attribute.  For example, the nurse starts a 
shift without any level of fatigue; as the shift progresses, fatigue sets in and diminishes performance for the rest of 
the MAP processes. 
 
Agents are connected during run-time via a network-type of arrangement to the other agent-types.  This is 
detailed later and is portrayed graphically in Figure 3.5. 

Nurse Agents 

The agent type, nurses, are the most complex agents and play the central role in the model.  The attributes 
determine the unique characteristics of an agent and can influence how they function.  Table 3. 4 highlights a 
nurse’s attributes. 

The function of the nurse, quite simply, is to administer medications.  The nurse agent is connected to a set of 
patient agents in what resembles a network as represented in Figure 3. 5.  A nurse connects randomly to a set of 2-
12 patients.  The literature indicates the typical nurse to patient ratio is 5-7 patients to nurse in a medical-surgical 
hospital ward.  This number can get as high as 12-14 or as low as 1-2 patients per nurse depending on a wide 
variety of factors.   
 
Nurses are randomly divided into two roughly equal groups to resemble the way hospitals structure their staffing.  
Hospitals have devised various approaches for nurse shift staffing, an approach simulating two, 12-hour shifts were 
used to simplify programming.   A more conceptually accurate description of how the model handles the period of 
time that the nurses administer medication would be termed the MAP time period instead of shift. The approach 
of how shift time is handled in the modeled is discussed in more detail in the Time section. 
 
The nurse-patient connections are reassigned randomly at the end of each MAP time period.  At the end of the 
MAP time period, the connections between any given nurse agent and the currently connected patients are 
terminated.  New connections between this nurse and the population of patients are reformed at the beginning of 
the next MAP time period.  This approach approximates how a hospital would assign nurses during a shift.  This 
approach also has the effect of removing potential statistical biases from having the same nurse attached to the 
same patient for the entirety of a simulation run. 
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Table 3. 3: Attributes used for ABM agents 

Agent Attributes 
   

Nurse Data type Type Description 

Interruption boolean p if the nurse has experienced an interruption while 
administering medication 

Experience experience o the level of nurse experience/education/capability 

Shift shift o the shift the nurse is assigned to 

Fatigue double v the impact of fatigue on a nurse 

Patient Load double v the impact of the number of patients assigned to a 
nurse 

Medication Load double v the impact of the number of patient's medications 
administered by a nurse 

Patient Data type Type Description 

Medications per 
Patient 

integer p the number of medications ordered for each patient 

ADR (adverse drug 
reaction) 

boolean p value for the reaction a patient has to a delivered 
medication 

Patient medical 
state 

patientmedicalstate o patient severity of illness/condition 

Medication 
delivered 

integer p the number of medications administered 

Medications 
missed 

integer p the number of medications missed 

Medication Data type Type Description 

Medication 
difficulty 

double p value that is associated with how hard it is to 
administer the medication, e.g. an IV vs a capsule 

Medication 
severity 

double p value associated with the hazard of the medication to 
the patient e.g. warfarin vs a vitamin 

Medication 
delivered 

boolean p indicates if the medication has been administered 

Medication not 
delivered 

boolean p indicates if the medication has not been delivered 

Agent attributes p=parameter, v=variable, o=option list 

 

 

 

 

 

 

 

Figure 3. 5: Interconnections of nurse, patient and medication agents 
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The interaction between nurse, patient 
and medications resembles a network.  
Each nurse agent is connected to a range 
of patient (~2-10).  Each patient is 
connected to an average of 4 
medications.  Agents can “communicate” 
and connections are reformed randomly 
at set times through model execution. 
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Table 3. 4: Nurse agent characteristics 

Nurse Attributes Factor Condition Effect 

Interruption true/false random, probability 53% multiplier 0.95 

Experience novice, moderate, senior 25%, 50%, 25% to 10%, 
70%, 30% 

multiplier 0.95, 1.0, 1.05 

Shift (MAP Time Period) first/second random assignment 50% no effect 

Fatigue yes/no med admin time > 50% of 
shift 

multiplier 0.95 

Patient Load low/medium/high <5, >=5 & <8, >=8 multiplier 1.1, 1.0, 0.95 

Medication Load low/medium/high <=10, >10 & <=25, >25 multiplier 1.1, 1.0, 0.95 

 

 

Nurse Agent Attributes 

The nurse agent has six different attributes that define its behavior and propensity for causing a medication error 
as noted in Tables 3.4 and 3.5.  The following provides background on the attributes for the selected computer 
modeling approach. 

Interruption: A key factor in causing errors by nurses while administering medications.  This attribute is 
either true (occurs) or false for each pass a nurse goes through the MAP process.  An interruption has a 
likelihood of occurrence of 53% based on the literature.  The effect of an interruption is to decrease the 
chance of successful medication administration by 5%.  An interruption has the same effect for all nurse 
agents. 

Experience: Is operationally defined as an amalgam of education, talent, work experience and training.  It 
is intended to reflect the overall capability of a nurse to execute the intended task.  There are three levels 
of nurse experience: novice, moderate and senior.  The typical mix of this skill set is 25%, 50% and 25% for 
novice, moderate and senior experience levels respectively.  While the literature has some conflicting 
information on the association of years of experience, education and training on the occurrence of 
medications errors, the general conclusion is that more of each of these factors tends to reduce overall 
MAE’s.  The error multipliers for each of these experience levels is 0.95, 1.0 and 1.05 for novice, moderate 
and senior respectively. 

Shift (MAP time period):  Nurse Agents are assigned to a shift at the beginning of the simulation and will 
stay in that shift for the duration of the simulation run.  For this current version of the model, the shift 
does not have an influence on nurse behavior or performance.  A shift, in the context of this model, is a 
programming construct to allow for the effect of some influence within a conceptual construct of a day.  
The term first or second does not necessarily imply a sequence, rather just a differentiator between 
sequential runs.  The model period is from the perspective of the medication delivery period, for example 
300 minutes.  At the end of this medication delivery period the simulation will terminate the existing 
medication administration process and start a new one even if the nurse agents have not completed the 
delivery of medications.  Process delays are built into the steps of the MAP process to influence the 
amount of time it takes the nurse agent to complete each pass through the process. 

Fatigue: Is a physio-emotional state with a well-documented effect on decreasing human performance.  
The occurrence of fatigue in the model is a function of each nurse agent’s time-state in the model.  The 
onset of fatigue occurs at 50% of the MAP time period.  While the literature discusses the effects of 
fatigue, information has not been found when fatigue occurs.  The onset of fatigue was notionally set at 
half way through the MAP process in order to ensure an indication of its effect.  In reviewing the 
associated literature, the negative impact of fatigue is copious, a quantitative specific measure of fatigue 
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on the nurse administration of medications is vacant. Error rates on overall rates were found and ranged 
from several percent to over 20%  [397].  An impact of 0.95 (that is, a 5% decrease in performance) was 
selected to serve as an indicator for a decrease of performance. 

Patient Load: The number of patients a nurse has in their care is defined as patient load and can be 
measured by the nurse-patient ratio.  There is a clear correlation between nurse-patient ratio, nurse 
performance and medical error rates.  That is as the number of nurse-patient ratio increases, nurse 
effectiveness deceases and error increases [398].  Many studies indicate this negative relationship, in 
reviewing them, a quantitative measure was not found.  An impact of 0.95 was selected to serve as an 
indicator for a decrease of performance.  The number of patients per nurse ranges from 2-12 with the 
typical range of 5-7 as established by law in a number of states.  The number of patents per nurse is 
randomly assigned during each shift change in the model.  This attribute also infers that having more 
patients creates additional workload for the nurse besides medication administration (e.g. charting, 
treatments, etc.).   

Medication Load:  This is another measure of a nurses’ workload.  As part of the design of the model it is 
possible that a nurse might have more than an average number of patients but less than the average 
number of medications.  Similarly, they might have a smaller collection of patients with only several 
medications each.  No specific literature has been identified on medication load and its effects on 
medication administration errors.  However, some research exists on the effects of patient complexity 
and nurse workload  on medication error [399, 400]. 

While the number of medications per patient generally reflects the average of what has been found in the 
literature, the actual number of medications should be viewed from a more conceptual perspective.  That is, the 
consideration that there are low, medium and high amounts of medications per patient, which increases the 
workload of the nurse, is the important aspect, not what the actual amounts of the medications are.  For the 
purposes of this model, the number of medications is used to set up the three groupings of medication load (low, 
medium, high). 
 

Patient Agents 

Patient agents or, simply, patients, serve the purpose of being the recipient of the nurse’s actions during the MAP.  
When the nurse is in the process of administering medications, it is the patient that will ultimately be the agent 
that changes the state from the pre-administration to post-administration status; administration references the 
step of administering medication.  The step of administration in the MAP process indicates that the patient has 
gone through the step of being able to receive a medication. The determination of whether they receive the 
medication is a uniform random distribution that is set as part of the model.  In changing these states, the patient 
will either have or not have received a medication that was assigned to them not receiving the medication results 
in a missed dose.  Once the patient is assigned this post-MAP state, it will revert back to the pre-MAP status 
waiting for their next medication 
 
While not a central part of the model, a patient also demonstrates that ability to react to medications.  These 
adverse drug reactions (ADR) are a function of the patient receiving a medication.  The ADR state is built into this 
model for future applications. 

Patient Agent Attributes 

 
Medications per Patient:  Each patient is randomly assigned a number of medications ranging from 1-9.  
The range is based on the typical range a patient might have ordered on a medical/surgical ward.  The 
actual range is somewhat incidental to the purpose of the range which is to provide several categories 
that indicate the relative workload a nurse has based on the number of medications the nurse agent has 
to distribute.  Recall that both patient load and number of medications will influence the overall likelihood 
of error based on the number of times a nurse traverses the MAP flow, including the increased impact of 
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fatigue by having a longer work period.  The medication load was broken into three categories: low, 2-4 
medications per patient; medium 5-7 medications, and; high 7-9 medications per patient.  Each of the 
medication load categories is associated with a likelihood of error – or more accurately a likelihood of 
correctness of 1.1, 1.0 and 0.95 for medication loads low, medium and high respectively. 
 
Adverse Drug Reaction (ADR): An ADR likelihood is calculated for each MAP revolution.  This was added to 
the model as a conceptual demonstration of potential impact of a MAE.  Some research has been done to 
estimate the likelihood of the occurrence of an ADR based on a MAE.  This correlation is not 
straightforward and dependent on a large number of variables.  Given this, the literature was reviewed 
and a simple algorithm was developed to estimate the occurrence of an ADR based on the probability of a 
MAE [401-403].  This relationship was developed by curve fitting the relationship of MAE to ADR’s and 
deriving the associated line.  This equation was then used in a function to compute the estimated 
likelihood of an ADR.  The prediction is based on the following calculation: 
 

ADR = -0.233* Likelihood Index2+0.7942*Likelihood Index+0.403  
 

Likelihood Index39 is the product of the error likelihoods of each of the elements of the MAP state chart.  
The ADR is a calculated probability based on the information that was derived from literature values.  
While this is worthy as a thought experiment and could have value as part of a simulation tool, this 
preliminary algorithm requires more development to ensure accuracy and applicability. 
Patient Medical State:  This attribute was included for future model development. 
Medication Delivered:  Medications are unique to each patient.  The status of each medication having been 
delivered is tracked to build a medication administration profile for each individual patient.  The model can 
run in various configurations to include a discrete probability of medication delivery set at 0.974 or a 
stochastic approach using a truncated beta distribution as detailed in Table 3. 5.  The beta distribution is 
configured to emulate an extreme value event truncated at the upper end at 99% and a lower end of 50%.  
The shaping functions p (aka alpha), q (aka beta), shift and stretch of 0.999, 0.009, 0.0005 and .99 
respectively provide a curve resembling Figure 3. 6.  

 
 

 

Figure 3. 6: CDF of beta distribution used for establishing variable values 

 

 

 

                                                                 
39 The Likelihood Index, also referred to as statsCalcP is a composite probability that is the product of the individual probabilities of each of the 
MAP process steps and the probability modifiers from the agent attributes  
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Table 3. 5: Patient agent description 

Patient Factor Type Effect 

Medications per 
Patient 

integer random assignment between 
2 through 3 categories: low, 
medium, high with 1.1, 1.0, 
0.95 multiplier respectively 

influences nurse agent medication 
load 

ADR (adverse drug 
reaction) 

True/False probability of 0.01 provides notional indication of MAE 
occurrence 

Patient medical state good, fair, 
serious, critical 

random assignment based on 
normal distribution 

no effect - future application 

 

Medications Missed: It is possible for medications to go through the MAP cycle and not be administered to the 
patient.  These missed doses have a likelihood of 1.0 - Medication Delivered. The beta distribution was selected 
because it is particular suitable for modeling the random behavior of proportions and percentages.  It has found 
application in modeling the probability of success or failure of an event.  It has been described as a distribution 
that is suitable for modeling the probability of probabilities.  It is a very flexible distribution allowing great degree 
of flexibility in establishing the shape of the probability density function (PDF), as was done for this study.  In this 
application the PDF was given the shape of a curve similar to and extreme value function given the nature of the 
likelihood of error at each step of the MAP.  In particular, the probability of an error at each step is relatively low 
(or the likelihood of performing the step correctly is quite high). 

 The AnyLogic program provides this beta distribution as part of its collection of probability functions.  The 
estimated mean for this set of parameters is estimated at 0.94; AnyLogic does not provide a calculated mean, 
rather it must be determined empirically.  The 0.5 and 0.99 for lower and upper bounds were established to 
represent a lower end 50:50 chance of performing the MAP step correctly and the upper bound of 0.99 was set to 
represent that there is not a 100% of successful occurrence of performing a MAP step. 

Medication Agents 

Medication agents, often simplified to medications, represent the set of drugs assigned to each patient at the start 
of the simulation.  Each patient is randomly assigned a number of medications from two to nine.  The patient-
medication assignment does not change during the simulation.  The number of medications determines what the 
nurse agent goes through each cycle of the MAP for every patient.  The nurse will iterate through the MAP cycle 
for a particular patient until that particular collection of medications is exhausted.  For example, if a patient agent 
has four medicines, the nurse will cycle through the MAP four times before moving to the next patient.  Each shift 
will deliver the medications to each patient.  The available research reviewed indicates the average number of 
medications per patient per day to be five to seven different medications per day.  The actual number of 
prescribed medications vary widely depending on patient age, condition, as well as other factors [404].  It was 
assumed that there were two doses per day (coinciding with each shift).   

Medication Agent Attributes 

Medication Difficulty: Each medication has an attribute that quantifies how hard it is to administer the 
medication.  Consider the difficulty of delivering a vitamin capsule versus an intravenous medication that 
is both time and rate dependent.  The literature discusses differences in error rates of administering 
different via different routes (e.g. intravenously) and that certain type of medications have a higher 
incidence of error.  A comparative assessment of delivery route and type of medication was not found in 



www.manaraa.com

112 
 

the literature.   A simple ratio was used (Table 3.6) to establish a relative difficulty index for administering 
medications. The impact to MAE was set at 0.95, 1 and 1.1 ranging from most difficult to least difficult 
respectively. 

Medication Severity: This attribute is constructed in a very similar fashion to Medication Difficulty.  Its 
function is to assign a value to the likelihood of error occurrence based on the potential risk associated 
with a medication type and the magnitude of a negative overall impact.  The severity relates not just to 
toxicity of the medication, but the ease of errors such as overdosing, contraindications, masking of 
effects, and others.  As with the Medication Difficulty attribute, in the real-world setting, this attribute is 
complex and is influenced by a variety of factors [405-407].  Finding a severity index and probabilities of 
MAE associated with it proved problematic.  A 30%, 40%, 30% ratio for three levels of medication severity 
was used.  The impact to MAE was set at 0.95, 1 and 1.1 ranging from most severe to least severe. 

Medication Delivered/Not Delivered: As with the patient agent, medication tracks the state or measure of 
a medication having been delivered to the patient or not.  As the medication moves from its original state 
in pre-Medication Administration to post-Medication administration, the attribute is changed from false 
to true depending on if it is a delivered dose or a missed dose.  This change also sends a message back to 
the nurse agent that is attached to the patient with this unique medication that the attribute for this 
medication has been changed.  The medications’ delivery state is reset at the end of each shift. 

The modeling approach is intended to simulate the medication administration process.  The duration for 
administering medications varies based on a variety of factors.  An average time period for administering 
medications, based on research that performed time studies, is approximately eight minutes  [20, 408]. 

This duration was used in the estimate for the administration of each medication.  The maximum number of 
medications per patient was set at nine.  The total duration, without consideration of delays in the model, is 72 
minutes.  Various points in the model have built in delays to ensure coordination of the exaction of the model.  The 
total shift time set for the administration of medications was initially set at 120 minutes to ensure all medications 
would be administered prior to the change in shift.  The model is structured for the nurse to complete the 
execution of their portfolio of medications prior to the 120 minutes (in model time).  On the final pass, as the 
nurse completes the administration of its medication portfolio prior to the shift reaches its 120-minute limit, the 
nurse diverts to the nonMAPActivity state.  From there it will move to the off-Shift state.  At the beginning of the 
appropriate shift the collection of nurses in the current shift are transitioned to nonMapActivity and then back to 
the MAP process. 

 

Table 3. 6: Medication agent description 

Medication Factor Type Effect 

Medication 
difficulty 

minimal, 
intermediate, 
difficult 

assigned randomly 
according to a 40%, 45%, 
15% ratio 

value that is associated with how hard it is to 
administer the medication, e.g. an IV versus a 
capsule 

Medication 
severity 

low, medium, 
high 

assigned randomly 
according to a 30%, 40%, 
30% ratio 

value associated with the hazard of the 
medication to the patient e.g. warfarin versus 
a vitamin 

Medication 
delivered 

True/False probability based on beta 
distribution 

beta (0.5, 0.99, 0.999, 0.009, 5.0E-4, 0.99) 

Medication not 
delivered 

True/False probability based on beta 
distribution 

beta (0.5, 0.99, 0.999, 0.009, 5.0E-4, 0.99) 
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The model is designed to run in an asynchronous fashion within each agent environment.  The various agents 

coordinate activities via messages (a feature in AnyLogic40 to transmit unique signals to other parts of the 
program).  So, while the model runs asynchronously its execution is coordinated. 

Environment 

A unique aspect of an agent-based model is the construct of an environment that agents exist within.  The 
environment is simply a physical or virtual space that agents exist within as they execute their operations.   

AnyLogic has global environment frequently called Main.  Figure 3. 7 graphically represents the relationship of the 

environments for this model.  Main was used when constructing the function and defining the variables and 
parameters that would be used within the other environments.  Computer code that is needed at the start of the 
simulation, such as creation of global arrays, and nurse-patient-medication networks, are housed in Main as well.  

In AnyLogic, generally speaking, functions are executed for each agent.  So, if the model requires the function to 
execute only once during a given time increment it resides in Main.  For this reason, event transitions related to 
overall execution of the model, were placed in Main.  There are functions that exist in Main that reach into other 
agent environments (i.e. Nurse, Patient Medication) to obtain information.  

The interconnected set of states for nurse agents resides in the Nurse environment.  The functions and parameter 
specific to the nurses reside in the environment.  The programming elements (e.g. functions, events, parameters, 
controls, etc.) will operate or be executed for each individual agent.  The effect of this is for each agent to be a 
unique entity within the model.  Elements within Nurse can reach into other environments and acquire 
information.  Nurse uses Patient information numberOfMedications, medications, medicationAdminDifficulty, 
medicationSeverity, and Medication information to include medication counter information. 

The Medication and Patient environments are less complex as well.  The Patient environment has two simple state 
charts and Medication has one simple state chart.  Contrasted to Main or Nurse, there are relatively few 
programming elements.  As noted in the Time section, the two state charts in Patient, in essence, run 
asynchronously. 

 

 

 

 

 

 

 

 

 

 

Figure 3. 7: MAP ABM environment 

                                                                 
40 Future references to AnyLogic are inferred to include the registered trademark symbol 
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Model Construction and Execution 

General Operating Parameters and Conditions 

A number of foundational requirements needed to be established early in the development of the model.   

Number of patients: The number of patients was set at 100 and is an inputted parameter.  This 
approximates the number of patients in a large medical/surgical ward41.  The model is designed to allow 
changes to this value. 

Number of nurses: The number of nurses is also an inputted parameter but is calculated based on the 
desired average number of nurse-patient ratio.  For the purposes of this model the average nurse-patient 
staffing level was set at 542.  This value is used to calculate the range of nurse-patient ratios. 

Number of shifts: A variety of shift durations and approaches was considered.  As noted previously, a two-
shift approach was used for simplicity.  The way this model is designed, this actually means that a shift is a 
counting or labeling function.  A shift is normally thought of as existing within a day.  However, there is no 
“day” within this model.  In the case of this model, shift 1 starts at the start of the execution of this model, 
after a specific period the first shift ceases and the start of the second shift.  This process is repeated for 
the duration of the execution of the model. 

Random Seed:  The model was developed using a fixed seed to allow reproducibility during model design, 
validation and verification.  The seed was changed to a random seed for running experiments. 

The model can be broken into four main elements as noted in the Environment section; these are Main, Nurse, 
Patient and Medication.  While each of these elements are separate, there is, significant interplay between them.  
The execution of functions in one environment rely on information or operations from another environment. 

Main Environment 

Model execution In AnyLogic begins with a number of functions in an environment it defines as Main (Table 3.7).  
While other environments have this capability, it was not used.  At startup, the two-primary group of functions are 
executed which relate to the random allocation of agents within their respective networks and the creation of V&V 
mechanisms to evaluate the execution of the simulation.  Data sets in the form of arrays (AnyLogic calls the type of 
arrays used collections) are also created to support execution tracking and medication administration processes in 
the model. 

These startup functions set the stage for execution of the next key step in the program.  An AnyLogic function 
called an Event was used to control the shift dependent actions.  An Event executes a set of actions or computer 
code based on a signal or time interval.  The time interval was used and is tied to the duration of shift length.  Each 
time the duration of shift is reached (i.e. 120 minutes) the event “fires” and the associated functions are executed. 
This Event resets a number of collections for the next shift and resets the random assignment of patients to 
nurses.  The experimental design of the simulation changes two key parameters, the injection of JIT information 
effect and the impact of the attributes of the nurse, patient and medications agents.   

The Event consecutively changes the state of one of the two items every model cycle; the model cycle is defined as 
the length of shift times twelve or twelve shift iterations, which is about 7,000, passes through the MAP.   The 
number of samples selected was 7,000 with a power of 0.80, a standard deviation of 0.302, the overall response 
value, and a difference of 0.01.  This has the effect of controlling each condition of JIT Information and Attributes 
to get a measure of their effects described in Table 3. 8.  The false-false condition is, in-effect, the control, the 
true-false state measures the effect of all of the attributes without being affected by the information, the false-

                                                                 
41 http://thehospitalleader.org/an-average-hospital-is/ 

42 https://www.amnhealthcare.com/latest-healthcare-news/rn-to-patient-hospital-staffing-ratios-update/ 
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true state provides the effect of just information without influence from the attributes, and true-true is a 
composite of both information and agent attributes. 

Nurse Environment 

Following startup and the initial Event in Main, which sets the stage for the rest of the model’s execution, the 
other environments begin their processes.  Figure 3. 8, duplicated here for convenience, represents the state 
charts and their interaction for Nurse.  There are three general sets of states.  The first set includes the off-shift 
and nonMapActivity states of the mapProcessStatechart.  This environment begins its process when nurses process 
in through the off-shift state.  This state functions as a holding area for nurse agents prior to and after their active 
shift.  Connected to off-shift is the state nonMapActivity which receives nurse agents prior to going to off-shift and 
coming from off-shift.  The transitions to off-shift are actioned by the same messages.  Note that the transition 
from the compound state to off-shift ensures that an agent in the compound state at the designated shift change 
time (e.g. 120 minutes) will be immediately moved to off-shift in order to ensure all current shift agents are 
transitioned to off-shift at the appropriate time. 

The compound state is the next set of states.  These states represent the actual MAP process.  The first two states 
are interim states.  The preMapProcess receives nurse agents from nonMapActivity.  The mapProcess state 
receives the nurse agents after a slight delay and allocates them to either continue through the MAP process or 
diverts them to the missed dose state based on a random event at a 1% rate.  This 1% rate is derived from the 
available literature on the frequency of missed doses early in the MAP process. The mapProcess is a gateway state 
that is the location where the attributes, and overall coordination of the MAP process is done.   
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Table 3. 7: Primary Main startup functions 

Startup Function Description 

nurseAgentShiftColllectionCompiler(); Creates collection (array) of all nurses 

nursesInShiftCollectionFunction(); Creates collection of nurses by shift 

nurseConnectionsByShiftMainEXPERIMENT(); Creates netwrok connections to patients by 

shift 

NurseExperienceAllocation(); Randomly assigns levels of experience to 

nurse agents 

addNurseExperienceCollectionFunction(); Creates collection of nurses by experience 

numberOfMedsPerPatientGenerationFunction(); Randomly assigns (via network) medications 

to a patient agent 

numberOfMedsPerPatientCounterFunction(); Tracks the number of medications per 

patient 

nurseMedDistributionCheckCollectionBuildFunction(); Creates collection for tracking 

administartion of medications by patient 

medicationCounter(); Counts the total number of medications 

nurseMedDistCCounterCollectionStarter(); Creates tracking collection for distribution of 

medications by nurse 

shiftMedCounterCollectionBuildFunctionMain(); Creates collection for tracking medication 

adminstration by medicatin per shift 

randomConnectionsFunction1(); Builds the intial random connections 

between patient and nurse agents 

medicationToPatientNetwork(); Tracks the connection between patients and 

nurses 

totalMedSumPerNurseFunction();  Counts the total number of medications 

assigned to nurse via connected patients 

numberOfNursesInEachShift(); Calculates the number of nurses for each 

shift 

MedPerPatientCollectionFunction(); Builds the list of meds for each patient 

medCountingPerPatientCollectionBuildingFunction(); Builds the collectin counter for trcking meds 

process for each patient 

bigCheckingFunction(); V&V function that provides visual (i.e. run-

time messages) for model execution 

 

 

Table 3. 8: JIT and Attribute state changes during model execution 

 

 

 

 

  

JIT Information 

  

Off On 

Attributes 
Off False-false True-false 

On False-true True-true 



www.manaraa.com

117 
 

 

Figure 3. 8: Nurse state map 

 

The core of the MAP process is embodied by the next state sets.  A nurse agent enters the next MAP state, 
marNotChecked.  Within this state a randomTrue() function is used to determine the fate of the next step of the 
agent.  If the function returns a True then the nurse proceeds to the marChecked state indicating that the MAR 
was checked correctly.  If the function returns a false then the MAR was not checked correctly for this medication.  
The likelihood of a True occurring can be a deterministic value set at 0.975 or a deterministic value tied to a beta 
distribution as described earlier.  The deterministic value is an approximation based on the overall MAE error rate 
of approximately 88%.  The beta distribution is somewhat more tailored.  The remaining five state sets proceed 
identically to the marCheck state sets.  Table 3. 9 details the likelihood of error occurrence from a number of 
different literature sources [29, 409-414].  A beta distribution (Equation 3.2) was developed to approximate these 
values.  AnyLogic has a truncated beta function; this was set to range between 0.5 and 0.99 (50% and 99%).  This 
function does not have a means to insert the median or average value or standard deviation.  The various factors 
(p, q, shift and stretch) were input to approximate the desired values (see previous figure).  In the case of this 
model, the beta function is designed as an extreme value probability function to align with the typical occurrence 
of MAEs.  The deterministic version is used in obtaining the values for this study as noted below. 

𝑥𝛼−1 ∗ (1 − 𝑥)𝛽−1

𝐵(𝛼, 𝛽)
 

𝑤ℎ𝑒𝑟𝑒 𝐵(𝛼, 𝛽) =
Γ(𝛼) ∗ Γ(𝛽)

Γ(𝛼 + 𝛽)
 

Where Γ is the gamma function:  Γ(n) = (n-1)! 
α & β > 0 represent shape variable 
 
 

The agent proceeds from within the compound state to the medAdminProcessComplete state which is an interim 
state prior to medication delivery.  As the nurse agent exits the medAdminProcessComplete state, it passes 
through a decision node which directs the nurse to having either delivered the medication or not delivered the 
medication.  This is also determined by a randomTrue() function and similar to previous discussions, the model 
allows for either a stochastic probability of 0.95 or a beta distribution as determined above.  The deterministic 
version is used in obtaining the values for this study.  
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Table 3. 9: Likelihood of MAE by cause  

 Dose Omitted Wrong Dose Wrong Time Wrong Patient Wrong Route Wrong Drug 

 8.1% 37.1% 12.5% 2.0% 17.7% 5.7% 

 20.0% 24.1% 3.0% 1.9% 1.0% 1.0% 

 16.0% 12.0% 26.0% 0.0% 1.5% 1.0% 

 10.6% 10.0% 16.9% 1.0% 1.0% 1.0% 

 50.0% 7.6% 2.7%   0.7% 1.0% 

 5.0% 4.1% 9.0%   1.0% 2.0% 

 1.1% 7.7% 8.7%       

 14.4% 0.0% 13.9%       

 5.0% 11.7% 10.0%       

     11.6%       

Mean 14% 13% 11% 1% 4% 2% 

SD 14% 11% 6% 1% 6% 2% 

 

 
After the medication delivery states, the nurse agent is evaluated to determine if all the medications it was 
assigned has been administered.  This is done via using array counters that compare the list of medications per 
patient per nurse that have been delivered to what has been assigned.  Table 3. 10 provides an example of how 
the model determines if the nurse agent has completed medication administration.  Recall that each patient is 
assigned a specific number of medications.  The nurse will start with the first patient in its array, in this example it 
is patient number 12 which is assigned 9 medications.  It will continue going through the cycle of the MAP process 
until the nurse has delivered 9 medications; each time it goes through a cycle it will compare the assigned number 
to the delivered number.  When the Assigned value for a particular patient equals the Delivered number for that 
patient, the nurse will move on to the delivery of medications for the next patient.  In the example below, the 
nurse agent has one more medication to deliver to patient 63 before the nurse moves to patient 88.  When the 
entire array of Assigned values and the counter array of Delivered are equal, the nurse is diverted from re-entering 
the compound state for MAP to the nonMapActivity state where it awaits to go off-shift.  

The AnyLogic functions Events() are used as timers to determine when a particular shift should be dispatched to, or 
brought from home.  Events() are functions that can be controlled by times are signals.  These functions turn on at 
pre -determined intervals to execute specific tasks (in the form of computer code or other AnyLogic functions). 

 

Table 3. 10: Example of medication distribution counter 

Patient Number 12 18 35 63 88 

Assigned 9 8 6 2 5 

      
Patient Number 12 18 35 63 88 

Delivered 9 8 6 1 0 
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Patient Environment 

The patient states reflect the two primary considerations for the patient: where it resides in the overall MAP 
process and has experienced an ADR (Figure 3. 9). The patient moves between the preMAP and postMAP state by 
receiving communication from its current nurse.  This communication also informs the patient if it has received its 
medication or not.  In a separate set of states, the patient possibly experiences an ADR as a result of receiving a 
medication.  This is determined probabilistically based on the likelihood of a MAE resulting in an ADR as referenced 
in the literature.  The patient cycles back to its previous state after it reaches the postMAP and ADR states. 

The number of medications assigned to each patient is determined through an AnyLogic table function that 
establishes the number of medications ranging from two to nine.  A function then randomly assigns a value from 
the table function to a patient. 

Medication Environment 

The state for medication is discussed in the relevant V&V section.  After medication agents move from the premed 
(pre-Medication administration) to the other states, they reside in that state until the end of the state.  Agents 
move from preMed to the other states by receiving communication from the patient.  Figure 3. 10 reiterates the 
statecharts for the medication agent.  

Medication Severity and Difficulty distributions are determined by the AnyLogic custom distribution function.  
Medication Severity values are set at a frequency of 30%, 40% and 30% for low, medium and high severity 
respectively.  Difficulty in delivering medication is set at a frequency of 40%, 45% and 15% for minimal, 
intermediate and significant difficulty respectively.  Each value is assigned a likelihood of error (0.95, 1.0, 1.1) 
which is used in calculating the overall probability of MAE occurrence. 

 

 

Figure 3. 9: Patient statecharts 

 

Figure 3. 10: Medication statechart 

 



www.manaraa.com

120 
 

Selection of Modeling Software System 

AnyLogic Professional from the AnyLogic Company, was selected as the development platform for the computer 
simulation model.  AnyLogic is a robust, comprehensive multi-method modeling tool that supports agent-based 
modeling, discrete event simulation and systems dynamics modeling.  A unique feature of AnyLogic is that it has 
the ability to integrate each of these modeling methods in a given model should the need arise. It is built upon the 
Eclipse integrated development tools (IDE) using java.  As such, it has superior flexibility for creating specialized 
computer code and it will work across various computer operating system platforms.     

AnyLogic has a well-developed graphical user interface (GUI) that speeds the software development process.  The 
basic program structure is created by dragging icons from the menu on to an agent’s palette (Figure 3. 11).  Agent 
states are created by dragging the state icons on to an agent environment and inserting flow connections for the 
changes of state.  This approach provides for the verification of the logical connection between agent states. 

AnyLogic provides a depth and breadth of functionality for the design and construction of ABM models. The 
program provides easy creation of the typical functionality of variables, parameters, and states (Figure 3. 12).  In 
addition, it supports the ability to insert standard probability distribution functions (PDFs), create custom PDFs, 
and develop and insert functions (segments of customized java code).   
 

 

Figure 3. 11: Description of AnyLogic graphic programming43 

Figure 3. 12: AnyLogic graphic programming palette 

                                                                 
43 Images included under title 17 section 107 U.S. Copyright Law Fair Use Doctrine as educational material distributed for use without profit. 
Ref: https://help.anylogic.com/index.jsp?topic=%2Fcom.anylogic.help%2Fhtml%2Fstatecharts%2FStatecharts.html 
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Java code may be inserted into many of the programming icons of AnyLogic allowing for customization including 
creation of unique actions of the element.  The AnyLogic professional version has added features for enhanced 
debugging, extended user interface functions, and easier integration with output files. 

The features of AnyLogic include the advanced user interface, being implemented on an open development 
(Eclipse) java platform, having a relatively large user base and structured help and support, includes an extensive 
predefined library of functions and elements. 

Model Verification and Validation 

Verification and validation (V&V) of agent-based modeling poses unique challenges with ABM’s compared to other 
more established approaches, such as discrete event and statistical models.  ABM approaches, somewhat like 
artificial neural networks (ANN), have intrinsic “black-box” features that increase the difficulty in understanding 
what transpires during the simulation.  ABM is still a relatively recent newcomer as a modeling and simulation tool; 
there are a limited number of formalized tools for the V&V of ABM models.  The available literature suggests a 
process-oriented approach confirming the structure of the model logic and the alignment of the design with the 
desired output as an approach for V&V of ABM simulation models.  This is the approach used for the V&V of the 
MAP model.  Figure 3. 13 provides a graphic of the general consideration used in the V&V effort. 

Considerable effort was invested in ensuring the model was delivering the information that was required, that the 
information was correct.  That is “that the model was built right” and “that the right model was built”.  To revisit 
the model’s purpose, it is intended to generate the likelihood of a potential MAE per nurse for each medication 
that is delivered for each patient.  Various factors affect the likelihood or probability of the overall MAE based on 
the attributes of the nurse, the medication, the patient and if any information was provided to the nurse via the JIT 
intervention of information (i.e. information injection). 

 

 

Figure 3. 13: Verification and Validation description44 

                                                                 
44 http://www.easterbrook.ca/steve/2010/11/the-difference-between-verification-and-validation/ 
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Verification – Building the Model Right 

Two approaches were used to support the verification of the model: static analysis of the system where the 
structure of the computer code is evaluated, and dynamic analysis which assesses the model based on exercising 
and observing model behavior (dynamic verification).   

Based on the available literature and clinical trial, the following Model Requirements Specification -
Functional/Operational Requirements have been established. The overall design of the model is set forth in the 
definition of the requirements.  These requirements are outlined as follows: 

• Accurately reflects the MAP steps of the 5-rights of medication administration 

• Traces the steps of the MAP for each nurse 

• Provides an accurate statistical representation of the probability of each step of the MAP 

• Provides a consolidated likelihood or probability index of MAE 

• Provides MA tacking at the nurse-patient-medication level 

• Allows for the changes in agent behavior as determined by agent attributes 

• The medication MAP is configured for adjustable time frames based on minutes for time units 

• The model should account for the ability to have multiple nurse shifts 

• The patient-nurse ratio should be able to be controlled 

• The nurses should be randomly assigned to the patients they are caring for during each shift of the run 

• The medications for each patient should be consistent through each run 

• There should be a mechanism to allow for a missed dose 

• The probabilities of the likelihood of error are independent for each step of the MAP process 

• Provides a probabilistic indication of MAE and ADR for each medication administration 

• There is a mechanism to account for the individual medication administration events at both the nurse 
and patient level 

 
The AnyLogic platform provides a straight forward mechanism for the high-level static verification of the model.  
The graphical design allows for a comprehensive review of the logic of the programming.  Once the states for each 
of the agent types have been defined, they are placed on the respective canvas.  The flow of the agent through the 
mode, along with the intended action, can be visualized by stepping through each of the states.  This high-level 
verification or tracing of the program flow also sets the stage for designing the requisite definition of parameters, 
variables, functions, etc. to more specifically construct the model’s operations.  The flow for each of the agent 
types was evaluated for logic and alignment with desired outcomes.  As was mentioned previously, this was done 
by tracing the agent flow through the various agent states and connections.   Figure 3. 14, Figure 3. 15 and Figure 
3. 16 provide the high-level architecture of the three agent types defined for this model.   
  
The verification of the nurse flow can be done by tracing the respective diagram.  The nurse enters the initial state 
and passes through a number of initial “staging” states.  The nurse agent then moves to the compound state for 
the medication administration process.  Again, the nurse agent passes through a number of initial stages.  At the 
mapProcess state, the programming logic dictates that the nurse will either omit giving the medication or continue 
down the map process.  From this point, the MAP activities proceed through each step of the MAP. Each of these 
steps function as a binary switch based on the likelihood of either performing the step correctly or not performing 
it correctly.   As described in the functional requirements, the process is linear with no recursive elements nor is a 
later state occurrence a function of the likelihood of an earlier state.  At the completion of the MAP section, the 
nurse agent proceeds out of the compound state.  The nurse agent then goes through a decision step that once 
again allows the nurse agent to complete the medication administration or terminate it.  The purpose of this step 
is to accommodate the likelihood of a failure to administer a medication during the earlier states of the map.  Once 
the nurse passes through the decision element, it passes through the medication delivered or medication not 
delivered state then routes around to another model decision element.  This element evaluates if the nurse agent 
has completed the administration for each of the medications it has been assigned via the patients it is connected 
to.  If the nurse has not completed all of its medication deliveries, it re-enters the compound state and goes 
through the map process until the list of medications that it is assigned matches the list that it has delivered.  Once 
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the agent nurse delivers all of its medications, it passes the upper decision node and moves to the postMAP state 
where it awaits a signal to start the entire process again based on the shift change time.  At the end of the shift the 
nurse agents are directed back to the off-shift state either via the nonMapActivity state of the overall mapState 
compound state in the unlikely event a nurse agent is in the compound state when the shift changes. 

This logic aligns with the flow chart by Ghenadenlik et. al. that represents the medication administration process as 
referenced in the literature review. 

With the focus being on  the nurse agent model the other  environments are comparatively simpler.   

The patient agent presents a much simpler set of states.  There are two fundamental properties of concern for the 
patient agent; did the patient agent receive the medication and did an Adverse Drug Reaction occur after a 
particular medication was received?  The MAP state chart receives a message from the nurse state chart indicating 
whether a dedication was or was not received and then it transitions from the preMAP state to the postMAP state. 
The patient agent then cycles back to the preMAP state to wait for another message from the nurse state chart. 

The ADRStatechart is also simple with the patient agent moving between noADR and ADR states.  The movement 
between states is a function of the patient having received a medication as determined from the MAPstatechart 
and a probability of a patient experiencing an ADR as determined by a probability function elsewhere in the code. 

 

 

Figure 3. 14: Nurse statecharts 

 

Figure 3. 15: Patient statecharts 
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Figure 3. 16: Medication statechart 

The medication statechart logic represents a trio of states.  The first state is a holding state where medications 
reside prior to the administration.  The medication can go to one of two states depending on the message received 
from the nurse state chart.  The medication can either move to the dose state which indicates the medication was 
administered or it can go to the missedDose state indicating that the medication was not administered. 

A large portion of the code is inherently verified by the structure of the AnyLogic program and its real-time error 
checking and debugging capability.  The graphic representation of AnyLogic elements and their representation is 
pre-coded and automatically entered into the program when icons are dragged from the pallet to the canvas. 

AnyLogic automatically debugs the model at run time as the model compiles, checking for any syntax errors.  
Functional errors that result during execution of the code result in run-time errors.  When these occurred during 
the development of this model, it was the result of overflow errors of the arrays used for validation and control of 
the program: in essence the model would be trying to overfill an array for any number of reasons.   

Model run-time verification was built into the programming plan.  The key elements for verification of this model 
were to ensure that the correct number of medications passed through the administration process, that the 
medications were aligned correctly with the nurse and patient based on the patient and nurse network 
assignments, and that the nurses and patients were randomly reassigned to each other at the change of each shift. 

To ensure random association between patients and nurses between each shift, all the connections and nurses 
were broken for a particular nurse shift, the patients were placed randomly into an array and then selected at 
random without replacement from the array and assigned to each nurse based on a distribution that calculated 
patient load for each nurse.  The randomness of patient assignment to nurses was validated by doing both scatter 
plots and run tests. 

The verification of the random assignment of patients to nurses was done by collecting the assignments for each 
shift via collection of the patient index into an array for each individual nurse.  These arrays were then compared 
for randomness by using a runs test.  The runs tests were performed by analyzing 24 consecutive nurse-patient 
assignments for each nurse.  The P-values in Table 3. 11 indicate that nurse-patient combinations are random, 
ranging from 0.053 to 0.923.  Note that the runs test is a function of the sequence in which the values are placed 
within the array so it is only a general indication of randomness for the purposes of this model.  
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Table 3. 11: Random test  

Random Runs Test 

Nurse Observed Expected P-Value Nurse Observed Expected P-Value 

0 66 57.46 0.106 20 72 69.32 0.645 

1 52 51.5 0.92 21 97 84.99 0.063 

2 81 78.95 0.742 22 46 50.49 0.364 

3 78 74.41 0.552 23 71 72.33 0.823 

4 59 56 0.565 24 49 45.49 0.455 

5 55 50.98 0.419 25 54 57.39 0.521 

6 89 91.96 0.66 26 49 45.49 0.455 

7 65 54.98 0.053 27 97 90.16 0.303 

8 62 56.93 0.335 28 51 54.5 0.497 

9 89 80.99 0.204 29 55 48.37 0.17 

10 52 47.91 0.396 30 45 44.8 0.965 

11 62 56.93 0.335 31 89 88.44 0.932 

12 47 52.11 0.308 32 80 86.9 0.291 

13 89 88.36 0.923 33 91 85.95 0.437 

14 50 50.98 0.844 34 81 79.8 0.847 

15 81 78.5 0.687 35 37 37.57 0.893 

16 43 50.45 0.132 36 46 55 0.082 

17 83 75 0.187 37 91 85.95 0.437 

18 73 75.42 0.691 38 50 51.46 0.771 

19 63 62.5 0.927 39 40 46.91 0.146 

  
 
 
The verification of the functionality of the influences of both the nurse attributes and injection of information can 
best be seen by a graph of the composite probability outcomes which is a measure of overall effect on each 
individual medication administration event.  The graph in Figure 3. 17 demonstrates four distinct phases.  The 
furthest left phases are with no influence by either the nurse attributes or added information, this is affectionately 
referred to as the zombie effect; that is, the nurse agents proceed through the MAP process with no variance 
being created by information or attributes. The next phase, to the right, demonstrates the influence of the 
information injection; the effect is a significant compression of the variance since additional information increase 
performance pushing the likelihood of completing tasks correctly towards 1.0. The third from the left 
demonstrates the effects variance from the addition of nurse attributes creating wider variance swings since nurse 
behavior and effects of patient load and medication influences are broader.  The segment furthest to the right 
show influences from both information injection and nurse attributes thus indicating graphically that there is some 
effect from these influences. 
 
Another aspect to consider for verification of the model is establishing the performance of the medication 
distribution methodology.  That is, verifying that the computer code allows for the nurse agent to interact with the 
intended patient agent and the intended medication.  Considerable effort went in to building in a verification 
schema during computer code development, including the following.   

• Built a base array for each nurse that contained their currently assigned patient 

• Built a base array for each patient that contained the assigned medications 

• Used tracking arrays that counted the number of medications process by patient and nurse 
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• Compared the tracking array with the base array 

• Indicate that an execution error has occurred if there is misalignment during simulation execution 
 
Using this approach, the computer code is self-monitoring.  It is comparing the nurse-patient assignment and 
medication-patient assignment to the medication administration progress being made during the execution of the 
simulation.   
 
Specific verification functions were developed to support the verification process including: 

• Nurse-patient connections status 

• Patient-medications connections status 

• Nurse shift assignment 

• Allocation of medications per patient per nurse 

• Random assignment of patients to nurses by shift 

• Assignment of medications to patients 

• Transition of nurses into and out of the MAP process 

• Completion of MAP process by each nurse 

• Assignment of attributes to nurse 

• Stepwise progression of nurse through the MAP process 

• Individual tracking of patient-nurse-medication admiration status 

• Transitions between shifts 

• Message passing between agents (nurses, patients and medications) along with the time of the message 

• Random nurse loading function 
 
These functions were monitored either after sample simulation runs or during model execution to verify that the 
model was executing according to the functional design criteria and expected results for the model output.  For the 
sake of comparison of different simulations, a fixed seed was used to limit random variance between simulations. 
During computer code development, another mechanism that was used for verification was runtime messages and 
pauses to visually inspect output and messages.  Specifically, a traceln() function was used at key code segments to 
return string or object values for inspection.  Functions were developed (e.g. threadStopPause(), 
pressAnyKeyToContinue()) to temporarily pause or stop program execution for detailed evaluation of tracking 
information.  Figure 3. 18 is a snippet of traceln() output used to verify computer code during run-time. 

Validation – building the right model 

The fundamental requirement of this simulation model is to, in some fashion: 1) replicate the MAP process aligned 
with the probability of error occurrence found in the literature, and; 2) indicate the effect that JIT information 
might have.  The validation process, for the purposes of this effort, is in many ways an extension of the verification 
process. 

The validation of the model is ultimately determined by evaluating the actual output of the model against the 
expected values.  As described in the verification section, the overall composite probability of MAE is a good 
general indicator of the performance of this model since this output is a function of the individual probability 
inputs from each of the MAP steps as well as the effects of the variance of nurse and medication attributes.  

Revisiting Figure 3. 17, the significant changes in error probabilities, as the model progresses, indicates the effect 
of inclusion of information or nurse attributes.  Figure 3. 19 indicates changes in the inclusion of information or 
nurse attributes during specific time sequences.  The graph aligns with the design expectation that when 
information is added, the likelihood of error should decrease.  When variance in the attributes of nurse agents are 
included, the variance in the likelihood of error increases.  When both nurse attributes and information is included 
in the simulation, the probability range is broader than with just information but narrower than either the 
attributes/no information or neither information/attributes, also as expected. 
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Figure 3. 17: Graph of overall correct Medication Administration likelihood 

 

Figure 3. 18: Run-time messages for V&V 
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Figure 3. 19: Factors influencing likelihood of successful medication administration 

 

 

Many of the variables in the model “auto-generate” their value, in that, a random or probability function 
determines what the variables’ value is as the simulation executes.  A tool was developed to help validate the 
model which collected the key monitoring variables into a large spreadsheet.  This allowed visual inspection of 
each variable during each time step of model execution.  Table 3. 13 shows the variables contained on this 
spreadsheet.  Seventy-one separate variables were tracked.    This tool allows assessing the validity of the model as 
it relates to the interaction of the various variables at a low level.  Based on use of this tool, the assessment is that 
the model performs as expected with high confidence. 

Evaluation of the occurrence of MAP errors during the medication process (i.e. the 5-right steps) provides insight 
on the validity of the computer code and operation of each of these elements.  By checking the occurrence of 
calculated errors and comparing them against the standard error rate put into the model indicates if the model is 
executing correctly.  Table 3.12 provides the output of this comparative assessment.  The calculated value should 
be between 90-95 percent.  Each of these values falls within that range. 

Animation was used to graphically represent network connection changes (nurse-patient connections) during shift 
changes.  At each shift change, the animation of the network map was redrawn indicating the planned random 
disconnecting and reforming of nurse-patient connections. 

The relative effect of the JIT information effect and agent attributes is validated during each simulation run for 
each level of information injection.   
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Table 3. 12: Percentage occurrence of errors in MAP steps 

marCheckP Count Percent CumCnt CumPct medCheckP Count Percent CumCnt CumPct 

0 46 9.20 46 9.20 0 39 7.80 39 7.80 

1 454 90.80 500 100.00 1 461 92.20 500 100.00 

N= 500          N= 500          

doseCheckP Count Percent CumCnt CumPct patientCheckP Count Percent CumCnt CumPct 

0 49 9.80 49 9.80 0 35 7.00 35 7.00 

1 451 90.20 500 100.00 1 465 93.00 500 100.00 

N= 500          N= 500          

routeCheckP Count Percent CumCnt CumPct timeCheckP Count Percent CumCnt CumPct 

0 48 9.60 48 9.60 0 38 7.60 38 7.60 

1 452 90.40 500 100.00 1 462 92.40 500 100.00 

N= 500          N= 500          
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Table 3. 13: Key model elements for assessing model performance (V&V) agent attributes  

Key metrics Data type Type Description 

VariableControlIndicator    

Main.nextId integer v counter for total passes through the system 

Nures ID (this.getIndex()) integer agent index of current nurse 

variableControlIndicator string v composite indicator showing the collective 
status of information injection and the 
godVariable: that is, it indicates if these 
functions are "turned on" 

informationInjection boolean v turns on or of the function for information 
injection benefit "true" indicates the function 
multiplier is on 

godFunctionControlVariable boolean v turns on or of the function for godVariable 
affect "true" indicates the function multiplier 
is on 

currentShift shift v the currently active shift (2 shifts total) 

time() time v current model time 

this.patientsPerNurse integer p number of patients per nurse 

this.getIndex() integer agent index of current nurse 

this.currentPatient integer p the connected patient that the nurse is giving 
the medication to 

activePatient integer v the connected patient that the nurse is giving 
the medication to 

this.medsPerNurse integer p total medications per nurse 

this.nurseMedDisributionCounter integer p this provides the current counter for the 
number of meds a nurse has administered 

this.patientLink integer p this identifies the current patient for a given 
nurse 

medLinkConnections.size() integer p this is the size of the array for monitoring 
each medication being administered 

this.medicationsLink() integer p This identifies the current medication being 
given to the patient 

Main.medicationTotalSum integer v total number of medications in a shift 

this.marCheckP boolean v indicates if the MAR has been checked 

this.medCheckP boolean v indicates if the med has been checked (is it 
the correct med) 

this.doseChckP boolean v indicates if the dose has been checked 
correctly 

this.patientCheckP boolean v indicates if the patient has been verified 

this.routeCheckP boolean v indicates if the route has been provided 
correctly 

this.timeCheckP boolean v indicates that the med has been given at the 
correct time 

medicationsLink integer p This identifies the current medication being 
given to the patient 

medsPerPatientGiven integer p per patient counter for medications given to 
each patient 
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Table 3. 13: Key model elements for assessing model performance (V&V) agent attributes (continued) 

medsPerPatientMissed  integer p per patient counter for medications NOT 
given to each patient 

selectionOfNumberOfMeds() integer p medications per patient 

ADRPerPatient  integer p counter for ADR per each patient 

this.patientsPerNurse integer p the total number of patients for each nurse 

this.medsPerNurse integer p the total number of medications for each 
nurse 

this.interruption double p probability of interruption occurring 

informationInjectionBenefit double v multiplier value that is applied to each 5-right 
probability so the likelihood of that activity 
increases 

godVariable double v integrated probability of occurrence of nurse, 
patient and medication attributes 

this.missedDoseV boolean v direct missing of dose 

Main.nursesInCurrentShift integer v number of nurses in current shift 

totalStatsCalcV double v multiplication of probability of each of the 
probability parameters 

medSeverity MedicationSeverity p indicator of relative hazard of medication of 
current medication being administered 

medDifficulty MedicationDifficulty p indicator of difficulty in correct 
administration of the medication of current 
medication being administered 

informationInjection boolean v was information injected 

medsperPatient integer p number of medications of current patient 

nurseExperience integer p relative indicator of nurse experience, 
education and proficiency 

fatigueOutput double v measure of level of fatigue based on duration 
of time into the shift 

medicationLoad double v factor influencing impact of medication load 

interruption boolean v did an interruption occur 

patientLoadOutput double v factor influencing impact of patient load 

lengthOfShift time v duration of each shift 

MAR Checked double p Probability of MAR being checked by nurse 
agent 

Med Checked double p Probability of Med being checked by nurse 
agent 

Dose Checked double p Probability of Dose being checked by nurse 
agent 

Patient ID Checked double p Probability of Patient being checked by nurse 
agent 

Route Checked double p Probability of Route being checked by nurse 
agent 

Time Checked double p Probability of Time being checked by nurse 
agent 

p=parameter, v=variable, o=option list 
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The model, judging by the performance from a number of perspectives, appears to have acceptable performance 
in terms of executing in the fashion that it was designed for.  The output of each of the key variable was assessed 
and the ranges of output are in the limits of what would be expected form the design parameters.  Multiple 
sample runs were performed with different parameters and the results were consistent and within the expected 
values.  The assessment is that the MAP model meets the expectations for verification and validity.  

Key Assumptions and limitation 

Several assumptions were made as part of the development and conduct of this research.  These key assumptions 

were explored to consider the potential impact and are noted below 

Clinical Trial 

A fundamental premise of the clinical portion of this research is that the application of JIT information via the 

smartphone app translates directly to actionable steps based on the understanding or knowledge conveyed by the 

JIT information.  This implies several operational assumptions: 

In the context of this research it was assumed that information and knowledge are in essence synonymous.  The 

conveyance of information via the app is assumed to provide the appropriate contextual framework leading to the 

appropriate action.  The reporting on this research has used the term information to represent not only the data 

that is passed to the end user in a JIT fashion, but also with the right contextual framework that provides 

understanding for whatever task might be appropriate.  In short it was assumed that when the content of the app 

was delivered to the nurse they had the requisite capability to understand the relevance of the information and 

respond. 

The test subjects were specifically selected for this research because the represented a general uniformity of 

training, background and experience with regard to nursing skills.  This was based on the academic and practical 

training they had received up to participation in this study.  While this is believed to be generally true it is also 

understood that as individuals each of the participants brings with them different capabilities that could differ 

from the standard assumption.  Similarly, the clinical portion of this research used students that were executing 

the MAP scenario as part of a class, it is assumed that being part of the class did alter the outcome of the clinical 

trial. 

This research used, as a key resource the University of Tennessee HITS facility.  HITS had the benefits of providing a 

controlled clinic-like environment that was a virtual environment for both a hospital setting and patient encounter.  

As a simulation the assumption is that it conducting the scenario in this environment does not adversely impact 

the subjects’ behaviors.  

Computer Simulation 

Any computer simulation is a limited representation of the function(s) it is trying to represent. It is reported 

George Box, the renowned statistician had said “All models are approximations.  Essentially, all models are wrong, 

but some are useful.  However, the approximate nature of the model must always be bourn in mind”.   

The use of an information multiplier is used to sequential increase the effect of information on the statistical 

likelihood of error outcome.  While this multiplier is simply an indexing represent a notional effect of information, 

it is assumed that this approach represents how incremental increasing of information would perform. 

As an agent-based model, various attributes were assigned to the agents used as part of the model’s structure.  

The attributes selected for the agents used represent attributes in the research literature that impact medication 

administration performance. Little research has been done on the interaction of these attributes in an actual 

clinical setting much less a computer simulation.  Furthermore, computer modeling of human behavior has 
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inherent limitations.  The subset of attributes used in this simulation is assumed to provide and adequate 

representation of those that effect MAE performance. 

Medication Administration is a complex adaptive process influenced by many factors including the practitioner 

administering the medication, the patient, the medication, procedures, other health providers influencing the 

process both directly and indirectly, related computer systems, family members, and the medication itself.  By 

design, this simulation included a subset of these factors.  While these other factors can impact the MAP, the 

working assumption is that the current model is a reasonable approximation of the MAP. 

Limitations 

The sample size for the clinical study was determined by the class size of the course used that the subjects were 

drawn from.  The size of the sample provided adequate numbers of test subjects as confirmed by the sample size 

analysis. 

Student nurses were used as test subjects.  This provided the benefit of a relatively uniform education level and 

experience base 

Because the scenario used for the clinical trial was part of a Nursing class, its design needed to include both 

educational component as well as addressing the research objective 

The use of the HITS facility provided a controlled environment that allowed direct, unobtrusive observation.  

However, with this environment it did not have other influences that would occur in an actual clinical setting.   

For the clinical portion of the research, small groups or teams of nursing students carried out the scenario and the 

student nurses interacted during the execution of the MAP scenario.  This clearly influenced their performance 

during the MAP scenario.   
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Chapter 4 

Analysis 

 

Scope and Analysis 

Analysis Introduction 

Various data analyses were performed on the two components of this research, first, the CCS which defines what 
the impact of JIT information on MAP might be through a clinical trial, and second, developing an ABM that uses 
data from the literature and the CCS to simulate the MAP.  The data set for the CCS is modest and is based on the 
number of subjects divided between the control and treatment groups.  In contrast, the data set obtained from the 
model simulations is extensive and composed of multiple trials, control and treatment groups. 

Model Analysis 

The primary function of this model is to simulate the process of medication administration by nurses.  The overall 
measure of nurse performance is a composite statistic, defined as the Likelihood Index (LI), which indicates the 
likelihood of the nurse agents’ successful completion of the MAP. Recall from an earlier section that this single 
statistic is a function of many other variables within the model which contributes to the output for each 
medication processed through the medication administration process by the nurse agent.  The model was 
constructed to provide a broad collection of data output on the operation of the simulation. Figure 4. 1 represents 
the combination of inputs, effects, probabilistic effects and how the combine via the MAP process steps to form 
the likelihood output. 

The analysis will focus on validating the performance of the model through evaluation of simulation outputs and 
its alignment with values found in the related literature and the clinical case studies performed as part of this 
research.  The analysis of the model first considers the overall system level model performance, followed by 
considering specific output functions and then focusing on a more detailed analysis of a specific trial 
representative of the model’s operation.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. 1: Model elements contributing to overall data outputs for the model 
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Analysis of the model includes assessing the output of control variables data generated during the runs of the 
simulation against the variable representing the model conditions for the agents while executing the 
administration of medications.  Comparative and descriptive statistical analysis is used to demonstrate model 
functioning and to compare expected versus actual performance of the model.  The variable control analysis 
establishes overall benchmark performance of both the role of adding JIT information and gauging the effects of 
inserting the attributes of agents into the model. 
 
The level of information injection is examined for each of the control-variables (false-false, false-true, true-false, 
true-true).  The analysis of the model uses the composite performance indicator, Likelihood Index as the overall 
performance metric.   
 
The true-true group, the group of simulations with both information injection and agent attributes being active, 
contains the data sets of interest for comparing the performance of the model relative to the clinical case study 
and actual clinical settings.  Said another way, whereas the other control-variables are internal controls to validate 
model performance, true-true generates data that is intended to represent “real-world” nurse performance for 
administering medications.  The information-medication trials are evaluated as with the control-variables; a 
representative trial is selected, as noted later for more detailed statistical evaluation. 
 
Specifically, the effect from agent attributes is calculated by the product of the values assigned for each attribute:  
 

Attribute Variable = exp*fatigue*patientLoad*medicationLoad*interruptionEffect*diff*medicationSeverity. 
 
exp = nurse experience: overall experience of a nurse including education, years of experience and 
practical knowledge 
fatigue = nurse fatigue: overall effect of fatigue based on hours worked for a nurse 
patientLoad = patient load: number and difficulty of patients for a nurse 
medicationLoad = medication load: number of medications 
interruptionEffect = effect of interruption measured in hours worked 
diff = medication difficulty: inherent difficulty of administering a medication 
medicationSeverity = potential effect of a medication that would influence medication administration  

 
The overall composite statistic is: 
 

Likelihood Index = Information Injection value * beta distribution value* attributeVariable. 
 

General Data Consideration: 
 

Likelihood index45 = 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒 × 𝑏𝑒𝑡𝑎 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑠 ×
  ∏ ∏ ∏ 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑛𝑝𝑚𝑚=1𝑝=1𝑛=1 . 

Where n=nurse agent number, m = the subset of medications belonging to patient p for nurse n, s = each 
consecutive step in the MAE process 
 
Recall that each nurse agent, patient agent and medication agent, form a combination of agents that function 
similarly to a small network.  This small triplet network enters into the MAP and shuffles its way down the process 
chain stopping at each functional box where the likelihood of successfully completing that particular step is 
calculated.  At the end of this process chain, the nurse agent returns to the beginning of the process where it 
figures out if the patient agent it is currently dealing with has any more medications to process, if it does, it starts 
down the path with the new medication; if not, it switches to its next patient to start the process anew.  This is 
graphically represented in Figure 4. 2.  The variables that are used in assessing the operation of the model are 
detailed in Table 4. 1. 
 

                                                                 
45 Also referred to as statsCalcP 
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Table 4. 1: Key variables in monitoring MAP model operations and assessing agent performance 
 

Variable/Factor Description 

Primary Dependent Variable 
 

Likelihood Index (LI) Overall likelihood of nurse successfully completing each 
MAP element 

  

Primary Independent Variables 
 

Information Injection Measure of JIT information provided to the agent in 
completing the overall MAP 

Agent Attributes Combination of contributions influencing the behavior and 
performance of individual agents to each MAP element 

  

Contributory Variables 
 

MarCheckVariable Likelihood of a nurse checking the mar for each patient 

MedCheckVariable Likelihood of a nurse checking the medication for each 
patient 

DoseCheckVariable Likelihood of a nurse checking the dose for each patient 

PatientCheckVariable Likelihood of a nurse checking the ID for each patient 

RouteCheckVariable Likelihood of a nurse checking the route for each patient 

TimeCheckVariable Likelihood of a nurse checking the time for each patient 

Interruption Nurse agent attribute for determining the impact of 
interruption 

Medication Severity Medication agent attribute for the impact of medication 
on likelihood of error 

Medication Difficulty Medication agent attribute for the impact of medication 
on likelihood of error 

Nurse Experience Nurse agent attribute for determining the impact of the 
level of nurse experience 

Variable/Factor Description 

Patient Load Nurse agent attribute for determining the impact of the 
number of patients per nurse 

Medication Load Nurse agent attribute for determining the impact of the 
number of medications per nurse 

Nurse Fatigue Nurse agent attribute for determining the impact of the 
level of nurse agent fatigue 

  

Comparative Factors 
 

Log Continuous count of the number of medications that have 
passed through the MAP 

Time Continuous measure of the time elapsed of the MAP 
process during the simulation 
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Table 4. 1: Key variables in monitoring MAP model operations and assessing agent performance (continued) 

Variable/Factor Description 

Shift Number Continuous measure of the number of shifts during a 
simulation 

Patients per nurse The number of patients assigned to individual nurse 
agents 

Nurse ID The unique number identifier of individual nurse agents 

Current Shift The shift the simulation is currently in 

Medications per Nurse the sum of the number of medications a nurse agent has 
based on the patients it is assigned 

  

Model Parameters 
 

Length of Shift The duration of each period of the shift 

Number of Nurses Total number of nurses entered into the model at the 
simulation 

Number of Medications The total number of medications passing through the MAP 
during a shift-established by model 

Number of Patients Total number of patients entered into the model at the 
simulation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. 2: Creation and flow of data generated by the model 

 
 
 
 
 
 
 
 

MAR Checked 
Med 
Checked 

Time 
Checked MAP Complete 

Nurse1 

Patient11 

Med111 Nurse1 

Patient11 

Med112 Nurse1 

Patient11 

Med113 Nurse1 

Patient12 

Med121 

Nurse1 



www.manaraa.com

138 
 

A comprehensive simulation was designed as an approach in evaluating the MAP model.  The simulation was 
structured to cover the essential operating parameters of the model, namely: amount of information injection, 
total number of medications, and duration of the MAP process by shift.  The variables, the operating parameters 
are designed into the model and they vary within these boundaries based on predefined probability functions as 
described in the Materials and Methods section.  The model allows for change, the overall number of nurses and 
patients are kept at one hundred and twenty respectively to allow the average nurse:patient ratio to be 
maintained at 1:5 (nurses to patients) as referenced in the literature. 
 
The simulation iterates through various levels of information injection levels.  The increments were: 1, 1.1, 1.3, 1.5, 
1.7. 1.9.  These levels were selected based on previous trial simulations that indicated this spread was adequate to 
demonstrate sufficient detail on the effect of the increase of information and its effects on the dependent variable.  
The 1.9 maximum was selected based on the trial simulation output that demonstrated this value reached a high 
level of saturation of effect of information on model performance.  That is, at a multiplier of 1.9 for information 
injection, the Likelihood index was at 0.999 or greater for more than 97.5% of the medications processes.  
Meaning that there was a near 100% chance of at least 97.5% of the medications being administered.  While 
higher levels of likelihood would be attainable, the plausibility of reaching this level in actual clinical application is 
unlikely. 
 
Time duration for the MAP and the total amount of medication for each shift was also used as a measure in 
evaluating the model.  The full data set represents two levels of total medication amounts, within three shift 
durations.  The nominal amounts of 500 and 600 for total medications to be distributed was established by 
reviewing the literature for the average medications per patient for an acute care setting.  As noted earlier, the 
actual medications per patient is determined stochastically.  This property is also the reason that the actual 
medications amounts range from 598 to 503 for the low value and 595 to 600 for the high value.  The total number 
of meds cannot be manually set by the user at run-time, rather the probability distribution function must be 
modified and tested until close to the desired total number of medications is reached.  The fact that I hit 600, 
exactly the desired number, twice, was a testament to my blind good luck. 
 
The shift duration was developed empirically through running multiple simulations to observe what durations 
provided the best clarity on the effect of shift duration boundary conditions.  Durations of 120, 300 and 480 
minutes were selected as the best candidate times.  Table 4. 2 provides a summary table of the total medication 
number and shift duration combinations. 
 
The model is constructed to provide three separate control groups, each with a different function, and one active 
measure.  The collection of these values is referred to as variable-control.  These control groups allow for 
examination of the independent effects of the delivery of JIT information and the attributes of the agents and 
other model effects.  Table 4. 3 summarizes the various controls and active measure groups: the first three 
columns are control and the final column on the right is the effects group.  The “false” indicates that the particular 
information injection or agent attributes are not being used.  So, “false-false” indicates that neither information 
injection nor agent attributes are used during that portion of the simulation. This serves as the baseline to, in 
essence, evaluate the agent performance without any effects from attributes or information.  The “false-true” 
control indicates model behavior with attributes functioning, but without information.  Similarly, the “true-false” 
indicates that information injection is engaged and agent attributes are not being used.  The value “true-true” is 
the portion of the simulation where the effects of both information injection and nurse attributes are being 
evaluated.  It is important to note that the active measure (i.e. the true-true variable-control) is the variable-control 
state that represents the desired output for measuring the influence of both the information injection and agent 
attributes – it is the output from this variable control that generates the information that is used in evaluating 
agent performance.  The other variable-controls provide baseline indication of model performance to ensure the 
model is performing as expected. The Information Injection Level indicates the level or intensity of the information 
provided to the nurse agent. In the Table 4. 4 you will note that 1.0 indicates no information is provided or used by 
the nurse agent, while 1.9 indicates a maximal amount is used. 
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Table 4. 2:  Total medications per shift and shift duration combinations (medications-duration 

   
Shift Duration (minutes) 

   
Short Medium Long 

   
120 300 480 

N
o

. M
ed

s Low 500 498-120 503-300 501-480 

High 600 595-120 600-300 600-480 

 

 

Table 4. 3: Description of variable control variables 

Variable Control variable values Description/Function 

false-false Overall control value, the information injection and 
use of agent attributes is turned off 

false-true Control for information injection, agent attributes is 
turned on, information is turned off 

true-false Control for agent attributes, information is turned on, 
agent attributes is turned off 

 true-true Experimental value with information injection and 
agent attributes both turned on.  This measures the 
impact of information under the condition of the 
agents exhibiting active attributes 

 

 

Table 4. 4: Distribution of variable controls by information injection level and functional description 

  
Information Injection on/off and Agent Attributes on/off 

  
no info/no attribute no info/attribute info/no attribute info/attribute 

In
fo

 In
je

ct
io

n
 L

e
ve

l 1.0 false-false false-true true-false  true-true 

1.1 false-false false-true true-false  true-true 

1.3 false-false false-true true-false  true-true 

1.5 false-false false-true true-false  true-true 

1.7 false-false false-true true-false  true-true 

1.9 false-false false-true true-false  true-true 
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The length of shift is used as a basis for calculating the variable-control selection and information injection 
durations for the length of the simulation run for a particular value for information injection.  As an example, 
assume a shift length of 480 minutes is set.  As demonstrated in the top part of the diagram of Figure 4. 4, the 
model will go through 12 shift changes after which it changes to the next step of variable-control moving from 
false-false, true-false, false-true and then true-true.   After the simulation iterates through each of the four 
variable-control states, it will then change to the next level of information injection and complete the same cycle.   
Variable-control selection is calculated by using (length of shift) * 12 and information injection duration is 
determined by (length of shift) * 48.  So, in the example simulation shown in Figure 4. 4, a 480-minute length of 
shift spans 5,760 minutes and 23,040 minutes for variable-control duration and information injection duration 
respectively.  Another way to consider this is that there are four variable-control states for each level of 
information injection.  The variable-control states represent three separate experimental control groups and the 
active measure.  Each level of variable-control state is made up of 12 shifts.  The shift durations are set at the start 
of the model based on the goal of the simulation.  The graphic in figure 4.4, portrays the sequencing of time 
related model elements. 
 
One perspective of how the simulation trials can be represented by the categorical tree map is shown in Figure 4. 3 
which combines the information injection and variable control variables.  Starting on the right-hand side of the 
diagram, there are three different control runs (ff, ft, tf) and one response run (tt) for each level of information 
injection represented in the diamonds.  These are each done for a high (600 medications) and low (500) amount of 
medications.  Each of these are repeated for three different time durations (120, 300 and 480 minutes).  
 
The simulation designed for the analysis generated a data set of 945,570 rows with more than 100 fields.  That is 
over nine million data elements.  This large data set contains each of the six trials. The analysis initially assesses the 
overall data set allowing a comparative assessment of the various information injection levels, shift lengths and 
controls on model outcomes.  Following this assessment, a representative trial set was selected for the assessment 
of the variables for agent attributes and their effect on the overall likelihood of medication error.  Three factors 
influenced the selection of the sub-dataset for the final selection: 

1) The consistency of the data throughout the ranges of each of the shift duration/medications per 
shift/information injection combinations 

2) The use of the data set(s) that reflected the application of the agent attributes and injection of 
information 

3) Balance of the influence of the other factors across the data subset such as shifts, medication loading per 
nurse, agent attribute effects and others 

 
As a first step in the analysis, the data was evaluated to explore the model’s overall behavior by assessing key 
elements of the model.  A distribution analysis, shown in Table 4. 5, indicates minor differences between the 
number of data elements within the time/med categories and the variable-control fields.  The expected result 
would be that each row would be the same value among each of the columns.  Some of the differences between 
rows, the meds per shift-minutes per shift column, are a result of the slightly different number of medications for 
each of the trials.  Two notable differences are for the 120-minute runs and the true-true variable-control column.  
The 120-minute shifts have differences among each of the columns, while the remaining shifts have consistent 
values for each of the columns except for the true-true column, with the exception of the 503-300 trial.  The 
difference for 501-480 and 600-300 is 23 medications, and the difference for 600-480 is 28 medications.  The 
differences were evaluated for these three trials and were determined to be a truncation of the last several rows 
of data resulting from the means of data transfer.  The reason for the differences at the 498-120 and 595-120 will 
be explored in a future section.  Each of the data subsets was generally congruent with the literature on MAE 
performance and the clinical case study, and the 503-300 data-subset more closely fit with the criteria. 
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Figure 4. 3: Sequence of shifts, processing controls and information injection 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 4: Depiction of the relationship of the variable-control, shift duration and information injection variable 
during simulation execution 
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Table 4. 5: Counts of medications processed during separate trials for control and response groups 

Med-min false-false false-true true-false  true-true 

498-120 35734 35837 35628 35677 

501-480 36072 36072 36072 36049 

503-300 36216 36216 36216 36216 

595-120 42053 42647 41480 41836 

600-300 43200 43200 43200 43177 

600-480 43200 43200 43200 43172 

 

 

Figure 4. 5 evaluates the number of medications that have gone through the MAP considering the spread, 
information injection amount and shift.  The shorter shift duration, 120 minutes as highlighted in the figure, shows 
the most variance.  The remaining elements show only a slight change in the largest amount of information 
injection, 1.9, with the exception of 503-300 which 12,072 medications processed for both shifts and all levels of 
information injection. 

The evaluation of the distribution of the dataset was done by performing a contingency analysis using JMP 13.  The 
analysis was partitioned by the duration/medication load and information injection amounts in order to provide a 
more detailed assessment.  Since there are two shifts, the contingency analysis was done for both shifts.  Of the 
three durations used, 120, 300, and 480 minutes, the 120-minute duration results in the MAP process execution 
being terminated due to lack of time for completion, that is, nurse agents could not deliver all their medications 
because they ran out of time in the simulation for both shifts.  The highlighted areas in Figure 4. 5 show the 
incomplete delivery for the 120-minute period, particularly for the higher number of medications.  The 300 and 
480-minute durations completed their medication deliveries for shift one, shift two saw only the 300-minute 
duration at the 503 medication level completing the deliveries.   The last shift of the overall shift, shift 288, had 
slightly fewer medications processed for the 501-480, 600-480, 600-300 simulations of 23, 28, and 23 medications 
respectively. The fewer medications processed is a function of the operations of the model. 

While medications per nurse and duration of shift impact the likelihood of completing the administration of 

medication, the overall input variable for the likelihood of administration effort is the information injection 

function.  As noted above, this variable is the input that modifies the effect or benefit of providing JIT information 

to the nurse agent administering during the administration process.  The information injection function acts as a 

multiplier that modifies the individual probabilities of each of the check variables (e.g. marCheck, medCheck, etc.).  

For example, if the value of marCheck, as assigned by the probability distribution function is 0.721231, and the 

current information injection variable value is 1.5, the probability changes to 1.081846.  Clearly a probability 

cannot be more than 1, so the simulation modifies any value greater than 1 to 0.999.  The value 0.999 was selected 

as the high-end value to ensure no spurious events occurred in the simulation due to the unlikely occurrence of a 

probability of 1.  Plus, in a real-world event, the likelihood of a 100% chance lack of error does not exist. 

The other variable to consider is the attribute multiplier.  This variable is a composite effect of all the various 
attributes that influence the behavior (likelihood to make an error) for each nurse.  Similar to the information 
injection function, the attribute variable functions by modifying the overall check probability by multiplying it by a 
value that has the effect of changing the overall occurrence of that particular check probability.  Unlike the 
information injection function, the attribute multiplier is a function of various modifying values. 

 

 

Med-min represents the number of 

medications per shift and the number of 

minutes per shift respectively.  Note the 

relative consistencies of the values except 

for the 120-minute durations. 
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Figure 4. 5: frequency analysis of medications processed, individual trials by shift number 

 

The model is constructed to run controls for each level of information injection.  The controls selectively “turn on” 
and “turn off” the injection of information and attributes for the agents.  This demonstrates the effects of each of 
these factors on the nurse agents’ performance.  The description of the controls is provided in Table 4. 4.  As will 
be noted, there are three separate control conditions, one data generation run for each iteration of the simulation 
(i.e. for each level of information injection ranging from 1.0-1.9) 

Table 4. 5 analyzes the association between two variables, the information injection (the amount of information 
that is provided to the nurse) and the status of agent attributes and if the information injection is on or off.  The 
overall frequency of each of the conditions should be generally equal.  Differences could result from truncated 
medication administration periods due to limited time, or a greater number of medications distributed based on 
more medications in a particular shift.   

Multiple simulation runs were constructed with each having a defined duration and similar numbers of 
medications to administer.   As with the previous example simulations, there were low numbers of medications 
and greater numbers of medications.  Six model runs were designed to evaluate the model performance with 
varying lengths and different numbers of medication.  The actual numbers of medications vary between runs due 
to the random selection of the number of medications.  Table 4.6 lists the number of medications and time period 
in minutes for each of the six simulations.  

In these runs, in contrast to the previews model runs used for analysis, the number of medications were not set at 
a specific scale.  In the previous test runs, medications were set at five or six medications per patient to limit 
variance.   Rather, the distribution was kept at the native value in the model and the values were randomly 
selected during model instantiation.   
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Table 4. 6: Distribution of medications randomly assigned to patients during Lo and Hi medication trials 

 

No. Medications 
per Patient 

index Lo Hi 

1 2 2 

2 3 4 

3 4 6 

4 5 7 

5 7 8 

6 9 9 

 

 

The medication distribution for Lo and Hi number of medications per patient are seen in Table 4. 6.  The total 
number of medications per shift is set in the model by modifying the medications per patient distribution.  The Lo 
column totals 30, divided by six items in the column results in an average of five medications per patient.  Likewise, 
for the Hi column the total is 36 with an average of six.  There are 100 patients in each shift resulting in an 
expected value of 500 and 600 medications per shift respectively.  As noted previously, the actual number of 
medications in any simulation run might differ slightly from the expected value since the selection of medications 
per patient is stochastic, following a uniform distribution.  The medication distribution or the Lo and Hi values used 
are noted in Table 4. 7. 

Over 950,000 rows of data consisting of 10 million data elements, make up the full data set representing two levels 
of total medication amounts, three shift durations, each having three internal control groups and the response 
group for agent attributes and information injection levels.  These levels and conditions result in 48 different sub-
datasets.  A representative data subset was selected for the assessment of the variables for agent attributes and 
their effect on the overall likelihood of medication error (Figure 4. 6).  Three factors influenced the selection of the 
sub-dataset for the final selection: 

1) The consistency of the data throughout the ranges of each of the shift duration/medications per 
shift/information injection combinations 

2) The use of the data set(s) that reflected the application of the agent attributes and injection of 
information 

3) Balance of the influence of the other factors across the data subset such as shifts, medication loading per 
nurse, agent attribute effects, and etcetera. 

 

As will be seen, each of the data subsets was congruent with the literature MAE performance and the clinical case 
study, the 503-300 data-subset more closely fit with the criteria outlined above. 

Analysis of Clinical Case Study Data 

While the sequence of steps in a standard MAP follows a specific sequence, as in Figure 4. 7, in practice the steps 
can occur in a variety of sequences based on the preferences of the nurse and the particular condition being 
experienced at that time.  This set of standard steps was used to build a set of variables to track MAP performance 
for the clinical simulations. 

The activities of each nurse team were tracked through the MAP clinical simulation process using a set of variables 
that measured performance for each individual step of the process.  Table 4.8 provides the list and description of 
variables used in the tracking of the medication administration steps followed by the nurses during the MAP 
clinical simulations 

The Lo column is the number of 

medications that are randomly 

assigned to patients for the Lo 

medication trials (500 medications 

per shift).  Similarly, the Hi column 

represents the count of 

medications assigned randomly 

assigned to patients during the Hi 

(600 medications per shift) trials. 
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Table 4. 7: Matrix of trial runs for shift duration and no. of medications per shift 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 6: Data reduction/down-select of demonstration trial for specific analysis 

   No. of medications 

  Lo Hi 

Administration/shift 
time (minutes) 

480 501 600 

300 505 600 

120 498 595 
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Figure 4. 7: Notional MAP sequence steps for correct medication administration 
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Table 4. 8: List of clinical case study tracking variables 

Clinical Trial Variables Variable Description 

Pain Assessed/Med Needed Patient evaluated to determine level of pain or 
need for medication based on physiological or 
observed condition 

Dose Checked Medication dose validated and appropriate dose 
calculated 

Correct Dose Calculation Dose calculated by nurse is correct 

Med Delivered Medication administered appropriately 

Patient Checked Patient Identification checked 

Med Checked Medication type, form and other characteristics 
validated as correct  

Correct Med Delivered The correct medication type, form, and dose 
were administered 

Labs Checked Patient laboratory values checked in the EMR 

Labs Understood Laboratory values and associated implications 
understood and appropriate actions taken 

Route Checked Delivery approach (e.g. oral, injection, tablet, 
liquid) validated 

Time Checked Timeframe validated for correct medication 
administration 

Full/Stopped MAP process terminated 

MAR Checked Medication Administration Record reviewed 

Near Miss Nurse actions were on path to error but 
corrected before an error occurred 

Med Delivered Correctly All of the requirements for correct medication 
administration have been complied with 

Used App JIT application used 

Info Qualitative assessment of degree to which JIT 
app was used 

Liked Post simulation indication of app benefit 

Performance Overall performance measure of nurse 
performance in administering medication 
defined as successful or unsuccessful 
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Table 4. 9: Clinical study tracking variable by group frequency table 

  
Group 

 

Clinical Study 
Tracking Variable 

 
Control Treatment Total 

Med Needed 
No 0 0 0 

Yes 18 20 38 

Dose Checked 
No 4 10 14 

Yes 14 10 24 

Correct Dose Calc 
No 10 15 25 

Yes 18 5 23 

Med Delivered 
No 1 10 11 

Yes 17 10 27 

Patient Check 
No 5 10 15 

Yes 13 10 23 

Med Checked 
No 1 10 11 

Yes 17 10 27 

Correct Med Deliv 
No 2 10 12 

Yes 16 10 26 

Labs Checked 
No 12 9 21 

Yes 6 11 17 

Labs Understood 
No 7 9 16 

Yes 11 11 22 

Route Checked 
No 7 12 19 

Yes 11 8 19 

Time Checked 
No 2 0 2 

Yes 16 20 36 

Mar Checked 
No 0 0 0 

Yes 18 20 38 
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A frequency analysis of the response by variable for the control and treatment groups is provided in Table 4.9.  It 
can be generally observed that overall performance improves in the treatment group.  Specific interpretation on a 
by-variable basis is difficult because an outcome in the treatment group is the termination of the scenario based 
on the recognition by the nurse that the medication dose is in error and/or the patient’s laboratory values are 
inappropriate.  This early termination can occur at any stage of the scenario and as a result the process steps 
downstream from the termination event do not occur.  While the fact that termination occurred was recorded, the 
point at which it occurred and which process steps were affected was not. 

Various methodologies were used in analyzing the CCS data.  The methods selected were appropriately vetted 

based on the data type and population size.  The data was retrieved from standard score sheets used to collect the 

data.  It was collected into a spreadsheet and the descriptive statistics were generated.  As described later the 

population was relatively small. The primary methods selected were: 

• Binary logistic (logit) regression, 

• Chi square, 

• T test. 

The collection of the data was validated via reviewing of the video and audio recordings.  Each scenario was 

reviewed three times.  The data for each viewing was compared.  For the scorings that resulted in different values 

the section of the video was reviewed again to determine a final score. 

The qualitative aspects of the assessment, principally the test subject’s assessment of the performance of the app 

and suggestions for improvements were collated but are not reported as part of this study.  The input was used 

from the control group regarding the challenges in performing the training scenario to help in the design of the 

app.   

Several commercial statistics software computer programs were used in the analysis of the clinical data.  The 
software used was: JMP® 13.2.0, SPSS® 25, Minitab® 18 and Microsoft Excel® 2016.  Each program offered specific 
characteristics for certain analyses.  The large data set created some unique challenges for the software.  Excel is 
limited to one-million rows: the data set had about 950,000, This made the manipulation cumbersome.  Minitab 
was used for subsets of the data since it did not load the entire model data set.  SPSS and JMP both were able to 
load the large data set.   

JMP was used primarily for the analysis of the computer simulation data set while SPS was used primarily for the 
clinical data set.  The logit evaluations and other analysis was more streamlined.  The style of the tables in SPSS 
differs slightly from JMP.  This difference was maintained in order to highlight the difference between the clinical 
analysis and the computer simulation data analysis 

Appendix 1 holds detailed tables for the analysis for the interested reader including tables 4. 58 through 4. 64. 
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Table 4. 10:  Summary of clinical case study data 

   

Performance 

  

JIT app usage Unsuccessful Successful 

Control   No app use 16 2 

    No app use 6 0 

  Pre-Train Limited app use 2 0 

    Significant app use 0 3 

Treatment 

   

  

    No app use 0 0 

  Post-Train Limited app use 2 0 

    Significant app use 0 7 
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The evaluation of the data from the clinical case study will assess the association of the use of JIT information 
delivered via a smartphone application on the overall success of completing the scenario.  Success in the case of 
the scenario could be accomplished via a variety of decision paths by the student nurse.  The overall outcome 
being measured is; of the control group (no information app), how many nursing students successfully complete 
the scenario, contrasted with the intervention group that used the app and their success rate.  A chi-square test is 
used to indicate the likelihood of association between use of the smartphone app, implying JIT use of information 
based on the structure of the scenario, and a successful outcome. 

There are two data groups, the control group and the treatment group, as will be detailed more fully in the section 
covering analysis of this portion of the data.  The treatment group is broken down further into a pre-training group 
and a post-training group.  Pre-training/post-training refers to providing brief structured training on the use of the 
app prior to the subjects performing the scenario.  There were 18 subjects in the control group and 20 in the 
treatment group.  Table 4. 10 summarizes the clinical case study (CCS) data. 

While performance of the subjects for each step of the MAP process was collected, the key measures for the 
clinical case study are whether the app was used and the resulting performance of the test subject.  In the control 
group, 16 subjects were unsuccessful in executing the MAP process correctly leaving two that performed correctly.  
Overall, the pre-treatment group had eight unsuccessful trials in executing the MAP process of which two used the 
app; three successfully completed the scenario.  In contrast, the post-training group demonstrated seven subjects 
that completed the scenario successfully with two subjects being unsuccessful in their efforts. 

Analysis 

There are a number of interesting and challenging facets in analyzing this data generated from the simulations.  
The sample sizes are large, and highly skewed.  This skewness is expected and inherent to the beta probability 
distribution used along with the structure of the model: the significant positive skew is by design replicating the 
profile of mediation administration in an actual clinical setting.  Because of the skew, the data does not fit a normal 
profile and is a mix of balanced and unbalanced data.  Much of the data is stochastic and, the design of the model 
determines the value of the model’s variables during run-time.  The inference is that it is generally not possible to 
control most of the model’s variables to evaluate the impact of one variable on another variable.    
Both parametric and nonparametric analysis was used in analyzing the data in consideration of the lack of 
normality.  Guidance in the literature suggest larger sample sizes provide flexibility in using parametric measure for 
non-normal data; representatives of these tests were included in the assessment.  Another motivation for 
including parametric tests is their ability to perform better on data with different population sizes, as is the case 
with this data. Several comparative methodologies are used, chiefly, the Tukey-Kramer Honest Significant 
Difference (HSD), Dunn’s Method and the Steel-Dwass test.  

Summary 

A variety of statistical approaches are used in analyzing the model output.  The approaches evaluated the data 
obtained from within each simulation run (I.e. the control and test groups) and among the simulations performed 
for each level of medication loading and shift duration combination. 

Analysis methods included: 

• Analysis of variance within each simulation and among the simulation trials 

• Analysis of means 

• Equal Variances 

• All pairs (or joint pairs) parametric and non-parametric assessments 

• Chi-square tests  

Tukey-Kramer HSD 

A Tukey-Kramer HSD (Honest Significant Difference) pairwise comparison Connecting Letters Report provides a 
concise indication of the comparative similarity among the means.  The Tukey-Kramer range test is a parametric 
test but is robust for non-normal distributions and reportedly provides a more powerful approach when doing an 
all pairwise comparison when compared to the t-test.  The Tukey-Kramer method considers the differences 
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between and among the individual means (pairwise comparison) decided by the estimated standard deviation of 
the mean. While not needed for this sample set, the Tukey-Kramer method compensates for unequal sample sizes 
by calculating the standard deviation for each pair comparison. 

 
Examination of the paired groupings indicates the 480-minute scenarios and the 120FixedLo have means that 
appear similar. 

 

𝐻𝑆𝐷 =
�̅�i − 𝑥j̅

√𝑀𝑆𝑤
𝑛

 

�̅�i, 𝑥j̅ :  sample means where xi greater than xj 

MSw: mean square within 

n: sample size 

Steel-Dwass (all pairs) 

The Steel-Dwass (SD) is another nonparametric test. As with Wilcoxon it uses rank.  The Steel Dwass method 
performs the multiple comparisons while controlling the overall experiment-wise error rate: in essence, it is the 
non-parametric equivalent to the Tukey-Kramer All-Pairs method. The, Steel Dwass procedure in JMP is reported to 
allow unequal treatment sizes.  Each pair of treatments is compared by ranking only the observations in the two 
treatments of the comparison, calculating the mean rank for each treatment, and then computing the "Score 
Mean Difference", which is the difference in ranks with a continuity correction applied. The standardized statistic is 
asymptotically normal.  Steel Dwass is also reportedly good for large sample sizes.   

Dunn Method - All Pairs for Joint Ranks 

The Dunn’s method, also known as Bonferroni t, performs a comparison of each pair, similar to the Steel-Dwass All 
Pairs option. The Dunn method computes ranks for all the data, not just the pair being compared. The reported p-
value reflects a Bonferroni adjustment which, in essence, is dividing the group alpha by the number of 
comparisons which reduces the per comparison level of alpha.   It is, in essence, creating an orthogonal set of 
contrasts.  The Dunn test is appropriate for unequal sample size and as a posthoc test, it is used to pinpoint which 
are means significantly different from others. 

Evaluation of data balance 

A factor that is considered in analyzing data from various trials is data balance.  Data balance is defined as the 
number of elements in each trail.  The balance of the data can affect the outcome of comparative statistical tests 
Data sets begin compared that have near equal numbers of elements are “balanced” those with unequal numbers 
are unbalanced.   
 
The contingency test results provided a Likelihood ratio of 0.5716 and a Pearson Coefficient of 0.5709 this p value 
is greater than the threshold alpha of 0.05 leading to the conclusion that there is not enough evidence to support 
the null value assumption that there is a relationship between these two variables.  This result matches the 
expected outcome from the design of the model for the overall comparison of differences in trials. 
 
Assessing the balance of the data within a trial and across the variable control values, the data is largely balanced 
on a percentage basis (Table 4. 11 and Table 4. 12).  The greatest deviation from balance is noted in the 120-
minute trials.  Regarding the remaining trials, with the exception of the 503-300 trial, the only difference is with 
the true-true variable control. The very last iteration has a slight decrease in the number of medications processed 
resulting in 1/100th of one-percent point difference, less than 30 data elements; as a result, these trials are 
considered near-balanced.  The 503-300 trial data is balanced. 

When analyzed among the trials, the data is unbalanced primarily due to the differences in the medications per 
shift. 
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Figure 4. 8: Contingency analysis of variable control by spread mosaic plot 

 

Table 4. 11: Contingency table evaluating unbalanced data - spread by variable control 

 

 
 

Table 4. 12: Tests for contingency matrix evaluating unbalance data 

 

 

Count 
Row % 

false-false false-
true 

true-
false 

 true-
true 

Total 

498-120 35734 
25.01 

35837 
25.08 

35628 
24.94 

35677 
24.97 

142876 

501-480 36072 
25.00 

36072 
25.00 

36072 
25.00 

36049 
24.99 

144265 

503-300 36216 
25.00 

36216 
25.00 

36216 
25.00 

36216 
25.00 

144864 

595-120 42053 
25.03 

42647 
25.38 

41480 
24.69 

41836 
24.90 

168016 

600-300 43200 
25.00 

43200 
25.00 

43200 
25.00 

43177 
24.99 

172777 

600-480 43200 
25.00 

43200 
25.00 

43200 
25.00 

43172 
24.99 

172772 

Total 236475 237172 235796 236127 945570 

The mosaic plot in 

Figure 4. 8 is striking in 

the visual similarity 

among the elements.  

As noted elsewhere, 

there is only a modest 

percentage difference 

between comparable 

entries 

Contingency tests 
 

N DF  -LogLike RSquare (U) 

945570 15 6.6986494 0.0000 

 
 

 

Test ChiSquare Prob>ChiSq 

Likelihood Ratio 13.397 0.5716 
Pearson 13.406 0.5709 
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Figure 4. 9: Representative graph of success Likelihood by variable control demonstrating controls and response 
data 
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Figure 4. 9 is a graphical representation of the data profile of a representative simulation.  The description of each 
phase is labeled with a corresponding number label: 

1. This represents the false-false control section.  Note the smaller range on the vertical axis which is a result 
of decreased variance from the agents not having attributes and no information being applied which 
decreases the maximum likelihood of success. 

2. This section is a control section and it is the false-true section of the simulation which “turns on” the 
unique attributes of each agent but does not have additional information.  The larger range, when  

3. Compared to the initial section, this is a function of the increased variance from the application of 
attributes to the agents. 

4. Section 3 represents another control section referred to as true-false.  This section does not have the 
agent attributes functioning but includes the JIT information injection feature.   

5. The final section, section 4, has both agent attributes and JIT information injection functioning.  This 
section is the key section representing the fully functional model demonstrating the simulated 
performance of nurse, patient and medication agents. 

6. Label 5 indicates the change in pattern which is a result of the injection of information.  The decreasing 
range along each step of this, progressing upward in a saw tooth pattern, indicates the effect of increasing 
levels of information.   

7. Label 6 indicates the increasing levels of performance, that is, the improving likelihood of success along 
progressive increases in information. 

8. The change in variance induced attributes is indicated by level 7. 
9. The decrease in variance created by removing the influence of agent attributes is indicated by label 8, as 

the simulation transitions from false-true to true-false. 
10. The increase in variance from the presence of attributes being re-instituted for true-true is indicated by 

label 9. 
11. Label 10, similar to label 6, indicates the improvement in the Likelihood Success Factor as the information 

level is increased from no information to the maximum amount (6 increments). 
 
Figure 4. 9 serves as a segue into the specific analyses of the model starting with the three control sections and the 
test or demonstration section.   Each of the sections for each simulation run from false-false through true-false, 
the simulation incorporating agent attributes and information true-true for each level of medication loading. Shift 
duration is also analyzed to understand the dynamics of the model and the degree to which it appropriately 
represents the clinical case study results. 

Evaluation of Control Value False-False  

The first evaluation considers the overall total likelihood index (i.e. this is the totalStatsCalcP variable representing 
the composite statistic for the likelihood of the nurse agent successfully completing the MAP) for each of the trials 
(number of medications-shift duration) with no effects introduced from either information or agent attributes (i.e. 
the false-false variable control).  Without the effects of attributes or additional information the expectation would 
be that the mean values and variances should be consistent among the trials.  If there were a variance between 
trial data sets that would indicate an influence introduced by the model or an undefined effect from the shift 
duration or total number of medications per shift.  Oneway analysis was performed using JMP.  As would be 
expected, Figure 4. 10 indicates uniformity across the trials.  The analysis of variance (ANOVA), having a probability 
for the whole model test of 0.7381 indicates there is no significant difference among the mean values within the 
model.  Further analysis on pairwise comparisons was done using both the Tukey-Kramer HSD and the Steel-Dwass 
Method.  Both methods indicated no significant differences between the means of the trials at an alpha = 0.05 
which provides the connecting letters report. 
 
The results of the equal means and variance tests align with the original supposition that the variances would be 
equal.  Figure 4. 11 and Figure 4. 12 provides the detail of the test results.  Specifically, the figures indicate that the 
means and variances are similar.  The conclusion, based on the relative uniformity of the data, is that the model is 
generating consistent results through various shift durations and medication amounts when controlling for the 
effects of attributes and information.  Note in Figure 4.11 that the vertical axis has a quite small difference 
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Corresponding with the ANOVA the pairwise 
comparison of the falsefalse variable control 
demonstrated that there appears to be no 
significant difference among the means. 
comparison (Levels not connected by same 
letter are significantly different)   

between the lower decision limit (LDL) and upper decision limit (UDL): this difference of less than five one-
thousandths highlights the similarity of the values. 

The output of the ANOVA provided a p value is greater than the alpha = 0.05 leading to the acceptance of the null 
hypothesis that the means are equal.  Inspection of the mean and standard deviation for each of the trials for this 
control group supports the ANOVA that there is no significant difference of the means 

To summarize the analysis for the variable control value of false-false, there is no influence from either the 
application from agent attributes nor from information.  Based on this, the expected likelihood index values would 
reflect a uniform range, near equivalent means and variances.  Any differences would be a result of the stochastic 
distributions within the model.  This particular set of simulations made up of the each of the different shift 
durations and medication amounts with both the information injection and agent attributes set at having no 
influence, establishes the baseline from which the other potential influences from increasing the effects of 
information or application of agent attributes might be determined.  The analysis of the associated output from 
these simulations implies equivalent means and variances among the trial groups and therefore aligns with the 
expected outcomes. 

 

 
Figure 4. 10: Oneway analysis of likelihood index (LI) by spread variable Control=false-false, information injection=1 

 

 
Table 4. 13: Connecting letters report for Tukey-Kramer HSD and Steel Dwass all pairs 

 

 

Trial Tukey Steele 

501-480 A A 

503-300 A A 

498-120 A A 

600-300 A A 

600-480 A A 

595-120 A A 

Li
ke

lih
o

o
d

 In
d

ex
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The equal variance tests 
indicate, based on p>0.05, 
that the null is accepted 
and that the variances are 
equal. 
 

 

Figure 4. 11: Tests for equal means  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. 12: Equal variance tests for variable control false-false information injection level = 1 

 

The analysis of means 
indicates that there is no 
difference among the means 
of the trials falling beyond the 
UDL and LDL. 
 

Equal variance test Prob > F 

O'Brien[.5] 0.8100 

Brown-Forsythe 0.3657 

Levene 0.3638 

Bartlett 0.9335 

Welch’s 0.7373 
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To summarize the analysis for the variable control value of false-false, there is no influence from either the 
application from agent attributes nor from information.  Based on this, the expected likelihood index values would 
reflect a uniform range, near equivalent means and variances.  Any differences would be a result of the stochastic 
distributions within the model.  This particular set of simulations made up of the each of the different shift 
durations and medication amounts with both the information injection and agent attributes set at having no 
influence, establishes the baseline from which the other potential influences from increasing the effects of 
information or application of agent attributes might be determined.  The analysis of the associated output from 
these simulations implies equivalent means and variances among the trial groups and therefore aligns with the 
expected outcomes. 

Evaluation of Control Value False-True 

The next trial data set explores the effects of incorporating agent attributes on the overall likelihood of success 
probabilities.  The introduction of agent attributes introduces significant variance by creating differences among 
the agents.  In contrast with the false-false data set, this  shows a significant difference between the trial datasets 
as indicated by the ANOVA p value of less the 0.0001 (recall that false-false had an ANOVA p value equal to 
0.7381).  Figure 4. 13 evinces an overall mean of 0.39632; a lower mean than the mean of 0.548748 for the 
previous control.  In addition to the overall means being different, there is also a difference noted among the 
individual means between the two simulation runs.  The Tukey-Kramer HSD and Steel Dwass pairwise comparison 
have similar results indicating differences among various sets of the means.  The summary of the results in  

Table 4. 15 shows similar means between trials with 300-minute shift times and 120-minute shift times. 
The results of the equal means and variances tests indicate unequal variances among the trials.  Figure 4. 14 and 
Figure 4. 15 provides detail of the test results. 
 
The expectation was that the inclusion of agent attributes would contribute to increasing overall variance within 
and among the trials.  This result was borne out with the assessment of the differences among the means and 
greater variances in the system.  This indicates that the addition of attributes has the desired effect of creating 
diversity in the agents and how the effect the overall system. 
There is a decrease in the overall mean response from 0.54875 in the falsefalse control group to 0.39632 for the 
false-true control group as expected due to the depression of performance by the application of attributes. 
 
The p value calculated by the ANOVA is <0.001, is less than the alpha = 0.05 leading to the rejection of the null 
hypothesis that the means are equal. 
 
Corresponding with the ANOVA p value, the pairwise comparison of the false-true variable control demonstrated 
that there appears to be significant differences among the means.  In this comparison, 503-300 and 600-300 are 
similar as are 498-120 and 595-120 (In contrast the 480-minute trials (501-480 and 600-480) is different within 
itself and from the other trials, see Table 4. 14).  In contrast the 480-minute trials (501-480 and 600-480) is 
different within itself and from the other trials. 
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In Table 4. 15 the Tukey-

Kramer HSD and two non-

parametric tests, Steel 

Dwass and Dunn, for joint 

ranking indicate largely 

similar values with 600-480 

being significantly different 

from the largest grouping. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. 13: Oneway Analysis of Likelihood Index (totalStatsCalcP) By Spread variableControl=false-true, 
information injection=1 

 
Table 4. 14: Connecting letters report for Tukey-Kramer HSD and Steel Dawes all pairs comparison 

 

(Levels not connected by same letter are significantly different).  Levels not connected by same letter are 
significantly different. 

Table 4. 15: Connecting letters report for II = 1 variable control = true-false 

 
 

 
 
 

 

 

Level Tukeys Steel 

501-480 A 
   

A 
   

600-480 
 

B 
   

B 
  

503-300 
  

C 
   

C 
 

600-300 
  

C 
   

C 
 

498-120 
   

D 
   

D 

595-120 
   

D 
   

D 

Level Tukey Steel Dunn 

501-480 A   A   A   

498-120 A   A   A   

503-300 A   A   A   

595-120 A B A B A B 

600-300 A B A B A B 

600-480   B   B   B 
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The equal variance tests 
indicate, based on p>0.05, 
that the null is rejected and 
the variances are among 
the trials. 
 

 

 
Figure 4. 14: Tests for equal variances and means  

 

 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Figure 4. 15: Equal variance tests for variable control false-true information injection level = 1 

 

 

 

 

 

 

 

 

Test Prob > F 

O'Brien[.5] <.0001* 

Brown-Forsythe <.0001* 

Levene <.0001* 

Bartlett <.0001* 

Welch's <.0001* 

The analysis of means 
indicates that there is 
a difference among 
the means of the 
trials falling beyond 
the UDL and LDL. 
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The false-true control controls the information injection to the value of 1. This means no additional information 
input and the agent attributes is set to “on” meaning the agents’ attributes are active and are influencing their 
behavior and therefore their effect on the likelihood index.  The presumptive effect of incorporating the agent 
attributes would be to increase the overall variance of the model by creating a wider spectrum of potential 
outcomes or deviations from the beta distribution conditioning the base behavior of the agent.  As an example, 
without the attributes function, the agent behaves like an automaton zombie with its behavior strictly limited in a 
very narrow band; the addition of attributes expands the potential breadth of behaviors and as a result an increase 
in the variance of the likelihood index.   
 
The analysis of the output for false-true demonstrates a considerable increase in variance from the false-false 
baseline as expected.  Each of the medication-shift time trials indicate differing variations between the means of 
the likelihood index values for the trials, as well as deviations from the overall mean of the false-true runs.  The 
pairwise comparisons indicate unequal means among the trials with 501-480 and 600-480 being unique unto 
themselves.  503-300 and 600-300 are similar to each other as are 498-120 and 595-120, but, differing from the 
other trials.  The means for 501-480 and 600-480 are higher and, the standard deviation is also larger.  While the 
reason for this is not entirely clear, some plausible causes could include a random effect generated by the model,  
 
or less likely, an effect of shift length.  Note that while there is a difference in the means between the 300 and 480 
shift durations, the difference is less than 0.05.  In contrast, the difference between the 300 and 480 shift 
durations is considerably greater with the mean of the 120-shift duration at 0.3 and the other durations greater 
than 0.4.  This difference can be rationalized by considering the chart in  
Figure 4. 5 which plots the frequency of medication administrations by shift.  Of note is the saw tooth pattern for 
the 120-minute shift durations indicating the full number of medications per shift are not being administered.  We 
are assuming this could decrease the likelihood index.  However, as mentioned previously, there could be a 
duration dependent relationship between shift duration and the likelihood index that is not entirely understood at 
this point which warrants further investigation. Further evaluation of potential time dependency reveals a 
potential linear relationship between shift duration and the overall mean of the LI for the given shift duration.  The 
plot of residuals reveals potential heteroscedasticity. The graph of Figure 4. 16 plots the curve for the consecutive 
shift durations from 120-480 minutes for the false-true control which holds include agent attributes but has no 
effect from information injection.  This indicates a relationship of improved performance given longer shift times.  
The R-square value is 0.973849 with the p value for the intercept and variable “time” have p values of <0.0001 and 
0.0019 respectively.   
 

 
Polynomial Fit Degree=2 
mean = 0.3215651 + 0.0002929*time - 5.9518e-7*(time-300)2 
 
Figure 4. 16: Graph and analysis of mean Likelihood Index for shift duration levels for the false-true control 
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The plots of the 

individual trials 

in Figure 4. 18 

should be 

roughly equal 

and similar to 

the falsefalse 

trial. 

The (time-300)2 factor had a p value of 0.1169.  Consideration of this relationship must be conditioned by several 
factors:  there are only three shift durations which should guard a firm conclusion of a relationship and, the 
relationship is projected for the mean values of the LI.  To be noted is graph Figure 4. 17 demonstrating an increase 
in residual difference versus predicted indicating a divergence of actual versus predicted.  The vertical bars 
represent all the medications administered in that specific shift duration. 

Evaluation of Control Value True-False 

The next step in the analysis is to evaluate the third control group where the level of information changes and the 
agent attributes are not included in the simulations. The expectation is that the mean of the Likelihood index for 
each level of information injection should gradually increase as the amount of information increases.  The variance 
remaining relatively constant as the amount of information injected into the system is progressively increased. 
At the initial level of information injection of 1.0, with no additional information being provided to the nurse agent, 
each trial is relatively equivalent.  Of note is the difference in the 600-480 trial in comparison to the other trials 
having the indication that the mean is modestly lower than the other trial mean values.  This is not completely 
unexpected, the pairwise comparison tests indicate that the 680-480 trial is not shown to have significant 
difference with two other values.  A comparative frequency analysis was done of the individual response values, 
the 600-480 trial indicates a slight positive skew of 0.04 while the other trials indicate a slight negative skewness.  
This slight shift in the histogram implies larger values resulting from the probability distributions for the trials other 
than the 600-480 trial. Since the data is not normally distributed, the analysis of means (ANOM) for variances with 
Levene was used. This method provides a robust test that compares the group means of the absolute deviations 
from the median (ADM) to the overall mean ADM. The use of ANOM for Variances with Levene (ADM) if it is 
suspected that the data is non-normal.  ANOM for Variances with Levene (ADM) is a nonparametric analog of the 
ANOM for Variances analysis. 

 
 

 
Figure 4. 17: Residual by predicated plot of trial LI means 

 

 
Figure 4. 18: Oneway analysis of likelihood index by medication amount/shift duration variablecontrol=true-false, 
information injection=1 
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Analysis of means using 

ANOM in Figure 4. 19 for 

variances with Levene 

(absolute deviation from 

mean/median) indicates 

that all values fall within 

the decision limits. 

 

Figure 4. 19: Analysis of means for true-false=1, for II trials 
 
 

Figure 4. 20: Tests that the variances are equal for true-false II=1 

 

Figure 4. 20 and the associated table indicates that the variances are equal for the simulated trials.  In particular, 
the Levene test is noted because its use is appropriate for testing variances from non-normal distributions.  All p 
values reported are greater than the alpha of 0.05 concluding that the null hypothesis that the group variances are 
equivalent. 
 
In analyzing the control group for the effect of information injection controlling for agent attributes (i.e. excluding 
the effects for attributes), the effect of information injection increase can be summarized by  
Figure 4. 21 which plots the change in the mean of likelihood of error avoidance and the associated decrease of its 
standard deviation.  This figure shows the average values for the combination of trials.  This composite graph 
provides a density map of the medications delivered for each information level (colored vertical cloud), along with 
the associated box plot.  A curve tracing the predicted average for each information level as well as a curve 
indicating the rate of change of the standard deviation are also included. 
 
The density map for injection level 1 shows the point cloud spread of the likelihood of error avoidance (i.e. 
likelihood of success) for each medication that has gone through the MAP process.  The trial to the far left, as the 
internal control for this set, demonstrates grouping similar to that for the false-false control.  The expectation is 
that it would have the lowest overall mean of the trial sets which is represented by the beginning of the mean trial 
curve.  Table 4. 61 provides the detailed data set in the appendices. 
 
Considering the Oneway analysis in Figure 4. 22, the overall mean can be observed slowly increasing as the level of 
information injection increases from 1.1 to 1.9 as is expected.  The data in each of the trials gets compressed closer 

Test Prob > F 

O'Brien[.5] 0.1892 

Brown-Forsythe 0.1463 

Levene 0.151 

Bartlett 0.5079 
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to 1 as the injection of information increases the LI demonstrating the increase in MAP performance by the nurse 
agent.  The blue hash marks, representing the confidence interval, get progressively smaller as the II increases.   
The analysis of means used the same approach as described previously, using the ANOM variances-Levene (ADM).  
The values for each of the trials falls well within the boundaries of the upper and lower decision limits (Figure 4. 
23).  This highlights the minimal disturbance in the variance and small standard deviations.  This set of trials is 
similar in the amount of variance as the false-false control set of trials.  As such, it is expected that the addition of 
information does not increase the amount of variance. 
 
The analysis of means/medians employing both parametric and non-parametric tests proceeded similarly to that 
done for the false-true trial.  The connecting letters report indicates that each of the medication amount/shift 
duration trials have medians/means that are not significantly different, matching the expectation for the model 
design for this control (detail in appendix Table 4.61 to Table 4.64).  The Dunn method for joint ranking was not 
included in the connected letters report, the results are consistent with the Tukey-Kramer and Steel Dwass reports. 
 
Measurement for equal variance shown in Figure 4. 24 and Table 4. 65 indicates variance equality tests that 
generally show that the variances are equal.  Particular attention is given to the Welch’s due to the unequal sample 
sizes of the trials which well suited for unequal sample sizes and indicates the variances appear similar. 

No linear relationship was noted between the medication/shift duration trials.  Oneway analysis was performed on 
the true-false trials across the information injection levels 1.1-1.9.  Tukey HSD and Dunn’s test were performed 
(Table 16 shows the Tukey and Steel test).  All values are greater than 0.5 with most values approaching 1.0 and 
indicating that the means appear to be equal implying no linear relationship exists (abridged output is provided in 
Table 4.66 in the appendix).   

 
 

 
 
 
Figure 4. 21: True-false composite boxplot for true-false 
 

1 1.1 1.3 1.5 1.7 1.9 

Trial information injection level 

Standard deviation of trial 
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Figure 4. 22: Oneway analysis of likelihood index by medication amount/shift duration variablecontrol=true-false, 
information injection=1 through 1.9. 
 
  

Information Injection 1 

Information Injection 1.1 

Information Injection 1.5

 

Information Injection 

1.3

 

Information Injection 1.7 

Information Injection 1.9
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Figure 4. 23: Analysis of means for true-false=1-1.9, for II trials

 

 

Table 4. 16: Connecting letters report for true-false trial 

 
1 1 1.1 1.1 1.3 1.3 1.5 1.5 1.7 1.7 1.9 1.9 

Level Tukey Steel Tukey Steel Tukey Steel Tukey Steel Tukey Steel Tukey Steel 

501-480 A 
 

A 
 

A A A A A A A A A A 

498-120 A 
 

A 
 

A A A A A A A A A A 

503-300 A 
 

A 
 

A A A A A A A A A A 

595-120 A B A B A A A A A A A A A A 

600-300 A B A B A A A A A A A A A A 

600-480 
 

B 
 

B A A A A A A A A A A 

 
 

 

Information Injection 1 
Information Injection 1.1 

Information Injection 1.5

 

Information Injection 1.3

 

Information Injection 1.7

 

Information Injection 1.9
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Figure 4. 24: Equal variance graphs for each information level for true-false 

 

Evaluation of Control Value True-True 

The true-true set of trials represents the data generated by the model when both the information injection and 
agent attributes effects are active.  Whereas the other variable control simulation groups were intended to serve 
as the controls to measure the effects of the individual items of information injection and agent behavior, this 
variable control produces the results that are intended to resemble the behavior of the actual MAP process along 
with the influences of providing JIT information and as such is the data group of central interest to this study. 
 
The expectation is that the output should resemble the combination of both the information injection and agent 
attribute control groups.  The mean of the Likelihood index for each level of information injection should gradually 
increase as the amount of information increases.  The variance, being impacted by the effect of the agent 
attributes, should be greater than that found when just the information injection effects were present.  The 
variance should decrease as the amount of information provided increases. 
 
The internal control labeled Information Injection 1 has no effects from information injection nor agent attributes.   
In contrast to the true-false equivalent internal control, it is noted that there is a difference among the means for 
each of the trials groups.  However, when compared to the false-true group it appears that the variance 
approximately the same. With no additional information being provided to the nurse agent each trial is relatively 
equivalent.  A more direct way to visualize this is in Table 4. 67 in the appendix.  Comparing the false-true and true-
false sets of columns, the means are large for the true-false, this is the effect of information injection increasing 
the overall success of medication administration.  The variance decreases for the true-false in comparison to the 
false-true.  The true-true group more closely resemble the false-true group which coincides what one would 
expect based on the construction of the model. 
 
The ANOM values indicate dissimilar means among the medication amount/shift duration trials for true-true=1.  
This is corroborated by the Tukey, Steel and Dunn tests.  Note that the 120-minute and 300-minute trials are 
determined to be equivalent amongst themselves. The 480-minute trials are not equivalent based on these tests.  
Not surprisingly, this matches the true-false control group.  The variance equivalency tests have p values less than 

Level 1 

Level 1.9 

Level 1.7 

Level 1.3 

Level 11 

Level 1.5 
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the alpha of 0.05 leading to the rejection of the null hypothesis leading to the conclusion that a significant 
difference exists between the values.  
 
While the initial impression would be that the mean values for the LI values for each of the medication/shift 
duration trials for true-true would be an average of the false-true/true-false variable controls, upon further 
reflection the resemblance of the true-true internal control to the false-true internal control makes sense based on 
the design of the model.   The information injection effect has, in essence a null effect, the agent attribute effect 
induces residual variance.  Combining the two effects leads to the results seen in the true-true control. 
 
The composite boxplot in Figure 4. 25 provides an overall visualization of the influence of inserting JIT in the 
simulation.  Moving from left to right the mean and median increase at an increasing rate while at the same time 
the standard deviation decreases at a relatively linear rate.  Noting the trend of the LI values, as with the similar 
true-false graph, the values increase the congregation around the maximum LI value of one as the information 
injection value increases.  This is a result of increasing the probability of the agent successfully completing each of 
the MAP process stages as a function of the increased level of information.   
 
Several differences worthy of note in a side by side comparison of the true-true and true-false composite box 
plots. 

1) The curves representing the mean have different initial slopes and rates of change.  The true-true curve 
begins with a shallower slope implying a slower increase in the benefit from additional information, but, 
accelerates somewhat more at higher information levels.  The terminus of the true-false curve is slightly 
higher than the true-true curve.  This coincides with the expectation that the true-true scenarios have 
significantly more variability due to the influence of agent attributes thus have a broader range of success 
outcomes. The log-dash light green curve on the bottom plot represents the standard deviation for the 
true-false curve overlaid on top of the true-true for easier comparison.   
 

2) The standard deviation curve for true-true has higher values and a steady linear decrease in contrast to 
the true-false standard deviation curve.  As with the mean values, the standard deviation is heavily 
influenced by the variance induced by agent attributes.  With no effect of agent attributes, the true-false 
standard deviation curve starts at a moderately low level and descends as the injection of information 
increases. The descent is moderated at the upper end of the injection of information amounts as a result 
of the likelihood of success being driven to high levels by the effect of the LI multiplier.  The effect is 
similar for the true-true curve with the difference being that the standard deviation in this case has the 
effect of agent attributes making the values larger while the starting and ending points are at higher levels 
due to the presence of agent attributes driving the variance up.  The short-dash light green curve on the 
bottom plot represents the standard deviation for the true-false curve overlaid on top of the true-true for 
easier comparison.  

 
3) In comparing the graphs along each of the information injection levels, the difference in the spread or 

range of the individual data points can be noted.  Each dot represents the likelihood of a medication being 
administered successfully.  The wider spread in the data for true-true starting with the information 
injection level of 1 represents the influence of the effect of agent attributes on the nurse agent’s 
performance in administering medications.  The difference in the boxplot dimensions indicate this 
divergence continuing along the axis. 

 

The bottom axis of both curves represents a categorical variable so the spacing is equal for each unit.  This makes 

for easier visualization of the data but must be considered when doing quantitative interpretation.  Specifically, the 

interval between 1 and 1.1 is less than 1.1 and 1.3.  This has the effect of making it seem like the early parts of the 

curve have faster rates of change than later parts of the curve.  The vertical axis is numerical therefore the 

interpretation requires no additional treatment.  A numerical version of the x-axis is provided later in the 

document (Figure 4. 35) for comparison by the interested reader. 
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Figure 4. 25: Composite boxplot of information level vs likelihood of success probability for true-false and true-true 

 
 
 

True-true  

True-false 
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Figure 4. 26: Oneway analysis of likelihood index by medication amount/shift duration variablecontrol= true-true, 
Information Injection=1 

Figure 4. 26 represents the mean, standard deviation and the all pairs Tukey-Kramer test for similarity of means.  
As would be expected, it is similar to the similar true-false graphs in terms of the increase in mean values and 
decrease in variance as the level of information increases.  There is more divergence among the trials which 
dissipates as the level of information applied is increased.  

The means comparison in Figure 4. 27 provide the analysis of similar means.  Review of these methods shows the 
means across the trials becoming statistically similar as they reach the 1.9 information injection level.  This is a 
result of as the information level increases, the likelihood of success increases (that is, agent performance 
increasing), and approaches the limit of 100% success.  
 
The parametric Tukey-Kramer test and the non-parametric Steel Dwass and Dunn’s methods show similar although 
not identical results (Table 4-17, 4-67, 4-68, 4-69)   Any differences in the parametric versus non-parametric 
method can be ascribed to the nature of the data being skewed (non-normal).  The connecting letters report for in 
Table 4.17 for the Tukey-Kramer and Steel Dwass methods are similar for information injection values 1-1.5.  There 
is a difference between the methods for the 1.7 level and then they converge back together for the 1.9 level; as 
described previously this is attributed to the effect of skewness and non-normality effects on the two tests. 
 
The conclusion on model performance as it relates to this portion of the analysis is that the model behaves in a 
fashion that coincides with both the intent of the design and what would be expected in terms of the performance 
or a nurse in an actual setting.  The relatively slight differences in the levels of performance, as measured by LI, are 
moderate by the increases in the amount of information provided. 

Information Injection 1.9 

Information Injection 1.1 

Information Injection 1 

Information Injection 1.3 

Information Injection 1.7 

Information Injection 1.5
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Figure 4. 27: Analysis of means for true-true=1-1.9, for II trials 

 

The output for the ANOM tests coincides with the other evaluations highlighting the difference in means among 
the medication/shift duration trials.  Of note is trial 503-300 which consistently stays within the decision limits for 
each of the information levels.  The 600-300 trial also stays within the decision limit boundaries with the exception 
of the 1.9 information level.  The 120-minute duration trials fall outside the boundaries throughout the range of 
information levels:  the likely cause of this is the consistent lack of completion of the MAP process for man of the 
medications which is assumed to be due to the shorter shift durations.   

The 480-minute trials also fall out of the decision limits.  The cause of this remained elusive until a more detailed 
examination revealed that the overall means of the 480-minute runs are uniformly and significantly above the 
other means.  Since the ANOM is calculated based on the population mean, the divergence of the 480-minute 
trials, outside of the decision limits, can be rationalized on their higher mean values-thus making their departure 
from the population mean greater.  Understanding this, the implication is that the longer shift duration leads to a 
higher likelihood of success.  Examining the other medication amount/shift duration, LI mean values showcases 
this concept: the longer the shift duration the higher the overall LI mean.  This concept falls in line with the logic 
that allowing more time to complete MAP tasks will lead to higher overall success in the MAP process.  Note that 
one artifact of the method of the graph in Figure 4. 28 is the shape of the curve at the left which reflects a 
polynomial feature.  This is because of the treatment of the information injection values as nominal rather than 
continuous; the actual shape of the curve more resembles a curve of a polynomial degree 2 . 

Information Injection 1.7 

Information Injection 1 

Information Injection 1.1 

Information Injection 1.3

 

Information Injection 1.5 

Information Injection 1.9 
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Figure 4. 28: Comparison of LI means by information injection level 

 

The connecting letters report in Table 4. 18 shows that the Tukey and Steel analysis show that II levels of 1 and 1.1 
are similar indicating that there are four groups of means with 501-480, 600-480, 600-300 and 503-300, and, 498-
120 and 595-120 trials each having common mean values.  At II level 1.5 and 1.9 are also similar among the two 
methods.  II levels.  II level 1.3 differs for the two analysis methods at the 120-minute trials.  At the 1.7 II level the 
300 and 120-minute trials also differ among the analysis methods.  The detail is provided in Table 4.66 through 
Table 4.70 in the appendix.  The differences between the results of the two methods are ascribed to the effect of 
the data on parametric versus non-parametric factors.  Note that the two non-parametric tests are similar.  The 
conclusion is that given the nature of the data that the non-parametric tests are more representative of the 
similarities of means. 

An evaluation of equal variances was performed.  The expectation based on the model design, would be that the 
variances would change over the course of information increase.  As the Figure 4.29 and Table 4.71 in the appendix 
demonstrates, the p values are less than the 0.05 alpha value and indicate that the null hypothesis for the 
variances being equal should be rejected. 

As noted previously, the true-true data set attempts to represent the performance of nurses in administering 
medications.  It is intended to model a number of key attributes of nurses and medications.  The role of JIT 
information is the key variable being assessed.  Based on the overall performance of the model as assessed by the 
statistically relevant changes in the response variable it can be concluded that the model responds as expected 
and effectively demonstrates the performance of the agents and the positive effect of the insertion of information 
into the MAP process.   

As noted previously, there are a number of key characteristics that can be derived from the simulation.  The 
predicative nature of the rate of change of performance from information injection could prove valuable for future 
optimization studies.  The observation that the rate of change of performance slows at higher information levels 
and that issues related to time and medication load are mitigated provides interesting options for improved 
performance in a clinical setting. 
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Table 4. 17:  Connecting letters report for true-true for LI means by trial  
 

  Level 501-480 600-480 600-300 503-300 498-120 595-120 

1 

Tukey 

A           
  B         
    C C     
        D D 

Steel 

A           
  B         
    C C     
        D D 

  Level 501-480 600-480 600-300 503-300 595-120 498-120 

1.1 

Tukey 

A           
  B         
    C C     
        D   
          E 

Steel 

A           
  B         
    C C     
        D   
          E 

    501-480 600-480 503-300 600-300 498-120 595-120 

1.3 
Tukey 

A           
  B B B     
        C C 

Steel 
A       A A 
  B B B     

    501-480 600-480 600-300 503-300 595-120 498-120 

1.5 

Tukey 
A A         
    B B     
        C C 

Steel 
A A         
    B B     
        C C 

    501-480 600-480 600-300 503-300 498-120 595-120 

1.7 

Tukey 

A           
  B         
    C C     
      D D   
        E E 

Steel 
A           
  B B B     
        C C 

    501-480 600-300 600-480 503-300 498-120 595-120 

1.9 

Tukey 
A A A       
  B B B     
        C C 

Steel 
A A A       
  B B B     
        C C 
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Figure 4. 29: Equal variance assessment true-true 
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Notional Model Replicate 

One way to assess the performance of the information injection portion of the model is to attempt to replicate this 
function outside of the model.  A 100-element data set was developed by first developing a random number set, 
and then transformed via application of a beta distribution.  As with the actual model, the input values were 
truncated at 0.5 for the lower level and 0.999 for the upper level.  The graphical representation in Figure 4. 30 is 
similar to that generated by the simulation.  As with the simulation, as the multiplier representing the information 
injection function increases from 1 to 1.9 the same effects occur; the variance decreases and the values 
progressively congregate at or below the maximum threshold of 0.999. 

The analysis below indicates similar results to the MAP simulation; variances differ as the multiplier increases.  The 
variance comparison tests all confirm differences in variances exists (Figure 4.31).  The pairwise comparison of 
means supports the observation of differing means among the groups.  The Tukey- Kramer test indicates 
similarities between three sets of pairs (Table 4. 19).    The non-parametric test indicates conflicting results with 
the Dunn’s method indicating more values with p values greater than 0.05.  The Dunn’s test can be very 
conservative test, especially if there are a larger number of comparisons (Table 4. 21).  

 

 

 

Figure 4. 30: Oneway analysis of Pseudo likelihood index by information injection level 

 

Table 4. 18: Analysis of variance 

Source DF Sum of 
Squares 

Mean Square F Ratio Prob > F 

InfoInject 5 7.498820 1.49976 67.0773 <.0001* 

Error 594 13.281087 0.02236   

C. Total 599 20.779908    

 
 

 
 
 
 
 
 

 

Figure 4. 31: Pseudo likelihood tests that the variances are equal 

Test F Ratio Prob > F 

O'Brien[.5] 54.1760 <.0001* 

Brown-Forsythe 30.4187 <.0001* 

Levene 80.2816 <.0001* 

Bartlett 48.4441 <.0001* 

Figure 4. 30 represents 

similar behavior to the data 

created from the MAP 

simulation with reduction of 

variance and compression to 

0.999 as the information 

injection multiplier increases 

The ANOVA and variance 

tests in Table 4. 18 indicates 

a difference in variance 

between the 1-1.9 levels.   
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Table 4. 19: Comparisons for all pairs using Tukey-Kramer HSD  

  
Tukey Steel Dwass Dunn 

Level - Level p-Value p-Value p-Value 

1.1 1 0.9998 0.7766 1 

1.3 1 <.0001* <.0001* 0.0004 

1.3 1.1 <.0001* <.0001* 0.0013 

1.5 1 <.0001* <.0001* <.0001 

1.5 1.1 <.0001* <.0001* <.0001 

1.5 1.3 0.1308 0.0434* 1 

1.7 1 <.0001* <.0001* <.0001 

1.7 1.1 <.0001* <.0001* <.0001 

1.7 1.3 <.0001* <.0001* 0.0002 

1.7 1.5 0.0172* 0.0012* 0.1864 

1.9 1 <.0001* <.0001* <.0001 

1.9 1.1 <.0001* <.0001* <.0001 

1.9 1.3 <.0001* <.0001* <.0001 

1.9 1.5 <.0001* <.0001* 0.0002 

1.9 1.7 0.2227 0.0057* 0.9314 

 
 
 
As one measure, these results provide confidence that the effect of the information multipliers is independent of 
the data set that it is used upon and, that the effects, such as decreasing variance and compression of the results 
at the 0.999, can be replicated. 

Analysis of 503 True-True Values 

While a detailed analysis of each of the medication amount/shift duration simulations could be analyzed, a data 
set best representing the group of simulations is being used for the detailed analysis.   A method of data reduction 
was considered.  After appropriate review the selection of a representative data was done as a means to get a 
representative set of data.  Each of the trials were considered and evaluated.  Using the criteria defined earlier, the 
503-300 simulation run was selected for the detailed variable review.  Recall the three factors used for the 
selection of the data set were: 

1) The consistency of the data throughout the ranges of each of the shift duration/medications per 
shift/information injection combinations 

2) The use of the data set(s) that reflected the application of the agent attributes and injection of 
information 

3) Balance of the influence of the other factors across the data subset such as shifts, medication 
loading per nurse, agent attribute effects, and so on. 

 
The data set generated from this simulation run demonstrated the following characteristics: 
Homogenous sizes of the sub data sets, such as the variable control values (i.e.  true-true, false-false, true-false, 
false-true), information injection trials and medication amount/shift duration.  The data sets have uniform 
frequency counts for medications processed without regard to the division of the data set.  For example, the 
frequency of medications processed for each of the information injection levels was 6026, the shift splits were 
identical at 18,108, and each of the MAP process steps is 6036.  This uniformity provides more options for selecting 
statistical analysis tools which allows more straightforward interpretations. 

The 503-300 is consistent with the expected design output from the model as noted in the earlier analyses.  The 
data set appropriately responds to influences of agent attributes and the injection of information as demonstrated 
in the previous data analysis.  The 503-300 data set consistently performs within the boundaries of the expected 
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limits.  Comparison of LI means by information injection level provides a representation of this in the form of 
tracking the means across the II levels. 

Analysis of MAP Process Step 

A key element of the model is the six MAP process steps that represent the sequential set of actions the nurse 
agent takes as it works to complete the medication administration process.  These steps are designed as 
independent steps and the outcome of one step does not influence the action of any other step.  While in an 
actual clinical setting, there could be some influence or interaction, no studies have been identified that draw such 
a correlation.   
 
Table 4. 20 highlights the frequency of the nurse agent successfully completing each respective MAP process step 
as the level of information used changes.  The table shows that as the level of information goes up, the success 
rate increases.  The number of successful completions starts at the level set by the beta distribution of about 85%, 
while the success rate increases for each level of information increase, reaching near 100% at the 1.9 information 
level. 

The graph in Figure 4. 32 illustrates the increase in likelihood for each process step across the information increase 
amounts.  Consistent with the model design, each of the steps is similar in their change along the information 
increase profile.  The slight variation can be explained by the stochastic nature of the beta distribution. 

 

 

Figure 4. 32: Graph of likelihood of successful completion of MAP process step 
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Table 4. 20: Frequency of success/failure of completion of each step of the MAP Process 

Patient check 
    

Information Injection N(FALSE) Row %(FALSE) N(TRUE) Row %(TRUE) 

1 918 15.21% 5118 84.79% 

1.1 582 9.64% 5454 90.36% 

1.3 217 3.60% 5819 96.40% 

1.5 90 1.49% 5946 98.51% 

1.7 44 0.73% 5992 99.27% 

1.9 13 0.22% 6023 99.78% 

Med check 
    

Information Injection N(FALSE) Row %(FALSE) N(TRUE) Row %(TRUE) 

1 896 14.84% 5140 85.16% 

1.1 585 9.69% 5451 90.31% 

1.3 223 3.69% 5813 96.31% 

1.5 94 1.56% 5942 98.44% 

1.7 45 0.75% 5991 99.25% 

1.9 24 0.40% 6012 99.60% 

Dose check 
    

Information Injection N(FALSE) Row %(FALSE) N(TRUE) Row %(TRUE) 

1 890 14.74% 5146 85.26% 

1.1 570 9.44% 5466 90.56% 

1.3 222 3.68% 5814 96.32% 

1.5 100 1.66% 5936 98.34% 

1.7 39 0.65% 5997 99.35% 

1.9 29 0.48% 6007 99.52% 

MAR check 
    

Information Injection N(FALSE) Row %(FALSE) N(TRUE) Row %(TRUE) 

1 895 14.83% 5141 85.17% 

1.1 572 9.48% 5464 90.52% 

1.3 220 3.64% 5816 96.36% 

1.5 88 1.46% 5948 98.54% 

1.7 52 0.86% 5984 99.14% 

1.9 27 0.45% 6009 99.55% 

Route check 
    

Information Injection N(FALSE) Row %(FALSE) N(TRUE) Row %(TRUE) 

1 849 14.07% 5187 85.93% 

1.1 533 8.83% 5503 91.17% 

1.3 217 3.60% 5819 96.40% 

1.5 103 1.71% 5933 98.29% 

1.7 57 0.94% 5979 99.06% 

1.9 19 0.31% 6017 99.69% 

Time check 
    

Information Injection N(FALSE) Row %(FALSE) N(TRUE) Row %(TRUE) 

1 891 14.76% 5145 85.24% 

1.1 542 8.98% 5494 91.02% 

1.3 204 3.38% 5832 96.62% 

1.5 87 1.44% 5949 98.56% 

1.7 48 0.80% 5988 99.20% 

1.9 25 0.41% 6011 99.59% 
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An analysis was done to compare each of the process steps to validate this assumption of the model build.  Similar 
to the previous analyses performed, a comparison of means/medians was performed.  Both parametric and non-
parametric tests were done to ensure consistency of results and limit the likelihood of type 2 errors (Table 4.73 in 
appendix).  The analysis confirms that the Model’s MAP process steps are analogous as observed in Table 4. 23.  
The mean likelihood of success values; the values for each of the information levels among the Map Process steps 
are noted to be similar (Table 4. 72 in the appendix).  

Agent Attribute Analysis 

For an agent-based modeling system, the attributes imbued upon the agents play an important role in the 
operation of the model.  For this particular model, a number of attributes were designed to influence the behavior 
of the nurse and medication agents.  The quantitative influence of these attributes was described earlier.  Table 4. 
21 provides the relative breakdown of the occurrence of each attribute in terms of percent and frequency.  The 
table below illustrates the relative contribution of each of the agent attributes for each of the information injection 
levels.  The value for N represents the number of medications administered during the respective information 
injection level and the Col% refers to the percentage of the elements of each attribute in a given information 
injection level. In essence, the N value infers the number of nurses in a category and is a function of the number of 
medications a nurse agent might have in that particular category. 
 
The model construction intends that the agent attributes would have consistent values over each information 
injection level.  As Table 4. 22 shows, the values for each category of agent attribute remains relatively constant 
across the information injection range. 

 

Table 4. 21: Descriptive statistics of agent attributes by information injection level 

 
Information Injection Level  

1 1.1 1.3 1.5 1.7 1.9 

nurseExperience N Col % N Col % N Col % N Col % N Col % N Col % 

moderate 3591 59.49 3637 60.26 3735 61.88 3585 59.39 3577 59.26 3575 59.23 

novice 1292 21.40 1283 21.26 1330 22.03 1319 21.85 1328 22.00 1279 21.19 

senior 1153 19.10 1116 18.49 971 16.09 1132 18.75 1131 18.74 1182 19.58 

fatigueStatus             

FALSE 3206 53.11 3083 51.08 3015 49.95 3012 49.90 3022 50.07 3000 49.70 

TRUE 2830 46.89 2953 48.92 3021 50.05 3024 50.10 3014 49.93 3036 50.30 

interruption             

FALSE 2812 46.59 2839 47.03 2835 46.97 2873 47.60 2855 47.30 2840 47.05 

TRUE 3224 53.41 3197 52.97 3201 53.03 3163 52.40 3181 52.70 3196 52.95 

medicationSeverity             

low 2402 39.79 2399 39.74 2404 39.83 2399 39.74 2400 39.76 2405 39.84 

medium 1964 32.54 1965 32.55 1965 32.55 1968 32.60 1968 32.60 1967 32.59 

high 1670 27.67 1672 27.70 1667 27.62 1669 27.65 1668 27.63 1664 27.57 

medicationDifficulty             

difficult 909 15.06 914 15.14 910 15.08 912 15.11 910 15.08 913 15.13 

intermediate 2858 47.35 2855 47.30 2856 47.32 2856 47.32 2865 47.47 2854 47.28 

minimal 2269 37.59 2267 37.56 2270 37.61 2268 37.57 2261 37.46 2269 37.59 

PatientLoadOut             

high 1517 25.13 1516 25.12 1501 24.87 1434 23.76 1559 25.83 1744 28.89 

low 1533 25.40 1403 23.24 1224 20.28 1297 21.49 1262 20.91 1476 24.45 

med 2986 49.47 3117 51.64 3311 54.85 3305 54.75 3215 53.26 2816 46.65 
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Table 4. 22: Average impact values of agent attributes by information injection level 

 
1 1.1 1.3 1.5 1.7 1.9 

medSeverity 1.025961 1.025895 1.026019 1.025919 1.025944 1.02606 

medDifficulty 1.030061 1.029987 1.03007 1.03002 1.02992 1.030028 

nurseExperience 0.998849 0.998617 0.997026 0.998451 0.998368 0.999196 

fatigueOutput 0.953115 0.951077 0.94995 0.949901 0.950066 0.949702 

interruptionOutput 0.9327 0.933263 0.93318 0.933973 0.933597 0.933284 

patientLoadOutput 1.012434 1.013494 1.014728 1.013014 1.015374 1.016667 

 

Table 4. 23: Variable Importance: agent attributes variable importance independent resampled inputs summary 
report for averaged II values 

Column Main Effect Total Effect 

Interruption 0.230 0.246 

Med Severe 0.174 0.211 

Med Diff 0.158 0.190 

Patient Load  0.114 0.113 

Fatigue 0.145 0.161 

Experience 0.05 0.062 

 

 

Each agent attribute category is assigned a numerical value that influences the performance or behavior of the 
nurse agent.  The relative contribution of the assigned numerical values of each of the categories within an 
attribute creates, in essence, a weighted value, that leads to an overall average value for the attribute. Table 4. 22 
lists these values for each attribute by information injection value.  A value greater than one implies a positive 
contribution to the likelihood index, and conversely a value less than one implies a negative benefit for that 
particular attributes contribution to the likelihood index.   The values should remain relatively constant with only 
modest changes in attribute values changing for each information injection level due to other random changes in 
the model during simulation runs.  Figure 4. 33 provides a graphical representation of each of these values by 
attribute and information injection level (the axis labeled Data can be interpreted as the Likelihood index).  Note 
that the change in values are at the level of only several thousandths, which is insignificant in terms of the impact 
to the overall model. 

The agent attributes operate in a way that is consistent with the design of the model and contribute in ways that 
are expected with overall model performance.  The attributes contribute in a measured way and as evidenced in 
the false-true control group have a significant impact on the likelihood index in spite of the small values each 
individual agent attribute conveys to the overall multiplier that modifies the likelihood index. 

Evaluation of Likelihood Index 

The Likelihood Index (LI) is the overall measure of the success of a nurse agent completing the MAP process 
without errors.  Errors are defined as not successful accomplishing each of the MAP steps in whole or in part.  The 
MAP is a composite statistic that reflects the influences of each of the agent attributes and stochastic model 
features.  There is an LI value for each medication that goes through the administration process.   

Figure 4. 34 demonstrates the change progression as the information levels migrate from low (1.1) to high (1.9).  
As would be anticipated, the frequency shifts from a diffuse pattern to be heavily concentrated at the maximum 
level of 1.0.  The frequency distribution clearly shifts to higher values along the II profile.  As noted in previous 
analyses, the standard deviation measurably decreases for each II increase as well.  The geometric mean was 
included as an evaluation parameter because of the polynomial increase of the LI function.  While its rate of 
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change is different than the mean, the overall interpretation of the effect of information on the LI does not 
change. 

Figure 4. 35 represents an overlay plot with the mean value represented by the curvilinear line.   As with the earlier 
analysis, the means and medians increase in a linear fashion that is approximated by a polynomial function.  The 
boxplot overlay demonstrates the variance that is typical for this plot.   The higher value of the medians is 
expected since there is a significant number of values at the higher end of the LI.  The values at the lower end 
depress the mean.  Table 4. 74 provides detailed information on the mean, median, standard deviation and range 
information in support of Figure 4. 35 in the appendix. 
 
The colored dots represent the nurse agents, the range of performance, the congregation of colors indicates the 
binning of nurse agents in certain performance areas resulting from the performance characteristics generated by 
their respective attributes. 

A line was fitted for the purposes of examining the potential predictive capability (Figure 4. 36).  The line fit for this 
function has an R-Square of over 0.99 and each of the coefficients has p values below the 0.05 threshold indicating 
that there is enough evidence for each of the coefficients to be valid.  The use of the linear relationship is 
observational at this point and a subject for future study, the use of this function could possibly be used to 
optimize the information injection value against other objective criteria such as cost and risk. 
 
The relative impact of agent attributes was assessed by performing least squares analyses.  The purpose of this 
analysis is to get an overall impression of the relative effects or impacts of the agent attributes on the outcome.  
The previous analyses indicated that there is no covariant nature with the attributes.  The nature of the data, its 
significant amount of skew and non-normal distribution makes detailed analysis and interpretation problematic.  
However, for the purposes of understanding the relative impacts of the attributes on the LI output, a least squares 
analysis will be suitable.  The initial analysis performed considered the overall performance of the attributes 
without inclusion of the individual effects of information injection. 
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Data by II Label=fatigueOutput 

 

Data by II Label=interruptionOutput 

 

 

Data by II Label=medDifficultyV 

 

Data by II Label=medSeverityV 

 

 
Data by II Label=nurseExperienceV 

 

 

Data by II Label=patientLoadOutput 

 

 

 

 

 

Figure 4. 33: Oneway analysis of agent attribute values, data = the multiplier value for the particular 

attribute 
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Distributions II=1 
 Likelihood Index 

 
Summary Statistics 

Mean 0.4096544 

Std Dev 0.2874504 

N 6036 

Median 0.337542 

Geometric Mean 0.2972386 

Distributions II=1.1 
 Likelihood Index 

 
Summary Statistics 

Mean 0.5655787 

Std Dev 0.2922344 

N 6036 

Median 0.5684525 

Geometric Mean 0.4653085 

  

Distributions II=1.3 
 Likelihood Index 

 
Summary Statistics 

Mean 0.7916199 

Std Dev 0.2184559 

N 6036 

Median 0.8554565 

Geometric Mean 0.7492207 

Distributions II=1.5 
 Likelihood Index 

 
Summary Statistics 

Mean 0.8975023 

Std Dev 0.1453512 

N 6036 

Median 0.993021 

Geometric Mean 0.8820871 

  

Distributions II=1.7 
 Likelihood Index 

 
Summary Statistics 

Mean 0.9478844 

Std Dev 0.0960541 

N 6036 

Median 0.993021 

Geometric Mean 0.9417622 

Distributions II=1.9 
 Likelihood Index 

 
Summary Statistics 

Mean 0.9747863 

Std Dev 0.0557428 

N 6036 

Median 0.993021 

Geometric Mean 0.9728778 

Figure 4. 34: Summary statistics for 503-300 likelihood index by information injection level 
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Figure 4. 35: Graph of likelihood index with mean values for LI by II and boxplot overlay for 503 true-true 

 
 

  

Polynomial Fit Degree=3  

Mean = 0.1328971 + 0.5154363*II - 1.0169364*(II-1.41667) 2 + 0.885933*(II-1.41667)3 

Figure 4. 36: Bivariate fit of mean of LI by II for 503-300 trial 

 

Nurse Agents 
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A measure of variable performance was done using JMP Fit Model.  Table 4.24 provides the list of each of the 
agent attributes and the relative contribution of each to the changes in the model averaged over each of the II 
levels.  Interruption has the greatest effect at 0.241 for the Main Effect which is an importance index that reflects 
the relative contribution of that factor alone, not in combination with other factors. The Total Effects value is 0.257 
which is an importance index that reflects the relative contribution of that factor both alone and in combination 
with other factors.  The other attributes descend in level of contribution with the experience of the nurse having 
the least in terms of its effect in terms of impact to changes in the LI given a change in experience.  Table 4.26 
provides a comparison for information injection at the level of 1 through 1.9.  Two things can be drawn from these 
tables:  

1) that the impact of individual attributes to the LI is different; and 
2) the magnitude of contribution can change as the II changes.  Overall, the relative impact remains about 
the same among the attributes. 

 

Based on the analysis and in accordance with previous analysis, each of the attributes were found to have effect 
values of less than the alpha value of 0.05 indicating that they do have an effect on the outcome of the model.  The 
analysis of each attribute value was performed two of the analyses are shown in Table 4.75 in the appendix.  The 
first data column shows the resultant effect of the attributes averaged across all II values, the second column 
shows these results for the II value equal to 1.9.  For the averaged II values only moderate nurseExperience is 
shown to have no effect.   

Nurse Agent Detail 
The model tracks medication administration at nurse agent for each individual medication.  This allows the 
evaluation of the performance of each nurse agent.  Figure 4. 37 charts the performance path of each of the 40 
nurse agents in this simulation.  The breadth of performance at II level 1 results from the difference in agent 
attributes established by the model at the start of the simulation.  As the simulation proceeds to higher levels of 
information, the nurse agent moves up the Likelihood Index scale.  It is worthy of note that despite the wide 
divergence of nurse performance at the early II levels, the nurse agents approach the same level of performance at 
levels 1.7 and 1.9.  This has an interesting implication; with the higher levels of appropriate JIT information, overall 
nurse agent performance increases to approximately the same levels without regard to their respective attributes.  
The conclusion is that JIT information mitigates the negative effects of attributes as well as random errors and 
enhances MAP performance. 
 
As with the bivariate fit for the overall mean shown in Figure 4. 35, lines can also be fit for each nurse agent.  The 
axis in this case are nominal instead of ordinal.  As a result it is expected that the rate of change will be somewhat 
different than that calculated early for the ordinal/categorical scale.  
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Table 4. 24: Variable Importance: agent attributes variable importance independent resampled inputs summary 
report for II = 1 through 1.9 

 Main Effect Total Effect 

 1 1.1 1.3 1.5 1.7 1.9 1 1.1 1.3 1.5 1.7 1.9 

Fatigue 0.136 0.159 0.148 0.168 0.157 0.102 0.149 0.173 0.17 0.186 0.174 0.115 

Interruption  0.265 0.25 0.214 0.252 0.263 0.137 0.278 0.263 0.235 0.269 0.281 0.15 

Med Diff 0.148 0.153 0.18 0.161 0.174 0.228 0.161 0.167 0.202 0.179 0.191 0.241 

Med Severe 0.18 0.2 0.227 0.158 0.188 0.214 0.192 0.214 0.248 0.176 0.205 0.227 

Experience 0.047 0.045 0.031 0.046 0.04 0.073 0.06 0.058 0.05 0.061 0.057 0.086 

Patient Load 0.143 0.11 0.082 0.11 0.081 0.157 0.156 0.124 0.104 0.128 0.099 0.169 

(Green highlighting Table 4. 24 indicates the largest contributing factor) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. 37: Representation of the performance of each nurse agent as measured by LI for each II level 
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Clinical Case Study 

Overview and initial analysis 

The clinical case study (CCS), as described in the materials and Methods section, used a classic controlled clinical 
trial approach to evaluate the benefit, if any, of JIT on improving the likelihood of success in the MAP process.  The 
results of the CSS are tabulated in Table 4. 26.  The scenario was designed to assess the performance of each of the 
MAP steps, as well as overall performance in medication delivery.  One of the successful outcomes, and in fact the 
optimal one, was termination of the process prior to completing all the steps since early recognition of overdosing 
of acetaminophen was a key factor in use and interpretation of the available information.   This early termination 
of the process makes it somewhat difficult to make direct conclusions on successful completion of each of the MAP 
steps listed in Table 4. 25 since early termination would lead to a number of the MAP steps which would not be 
completed.  However certain general observations can be made. 

1. Initial interfacing with the patient is done by all the nurse groups 
2. All of the groups used the MAR to access information, but with a varying degree of success, implying 

information could play a role in overall successful completion of the process 
3. Use of JIT information early in the process leads to increased performance 
4. Use and deciphering of information, such as laboratory results, can be enhanced by JIT information 
5. Use of JIT information, via the app, was enhanced by providing more specific training on its use, which 

also infers that the amount of information that is available influences overall performance success 

Table 4. 26 summarizes the results of the CSS with a total of 38 observations in the population. Eighteen of the 
observations were the control group, with the remaining 20 being the response group.  The response group has 
sub-groups for pre-training and post-training with use of the JIT app: there are eleven observations in the pre-
training group and nine observations in the post-training app. 

 
 
Table 4. 25: Compilation of clinical case study data for each MAP process step 

 

 

Pain 
Assessed 

Patient 
Checked 

MAR 
Checked 

Med 
Checked 

Dose 
Checked 

Correct Dose 
Calculation Performance 

Trial Yes No Yes No Yes  No Yes No Yes No Yes No Succ Unsucc 

Control 18 0 13 5 18 0 17 1 14 4 8 10 2 16 
Post-train 9 0 2 7 9 0 2 7 2 7 2 7 7 2 
Pre-train 11 0 8 3 11 0 8 3 8 3 3 8 3 8 

               
               

 

Time 
Checked 

Labs 
Checked 

Labs 
Understood 

Route 
Checked 

Used 
App Full/Terminated Performance 

Trial Yes No Yes No Yes No Yes No Yes No Terminated Full Succ Unsucc 

Control 16 2 6 12 2 16 11 7 0 18 2 16 2 16 
Post-train 9 0 7 2 7 2 2 7 9 0 7 2 7 2 
Pre-train 11 0 4 7 4 7 6 5 6 5 3 8 3 8 
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Table 4. 26: Summary of data for clinical case study on benefit of JIT for MAP successful completion 

   
Performance 

 

Group  Subgroup JIT app usage Unsuccessful Successful Row totals 

Control 
 

No app use 16 2 18 

  Sub totals 16 2 18 

    No app use 6 0 6 

  Pre-Train Limited app use 2 0 2 

    Significant app use 0 3 3 

Treatment   Sub totals 8 3 11 

    No app use 0 0 0 

  Post-Train Limited app use 2 0 2 

    Significant app use 0 7 7 

  Sub totals 2 7 9 

    Totals 26 12 38 

 

Power and Sample Size 

Retrospective analysis was performed to evaluate the power and sample size for the clinical case study.  JMP k 
Means was used to do the estimated calculations.  A pooled standard deviation for unequal sample sizes was 
developed using the following equation: 

𝑠𝑝𝑜𝑜𝑙𝑒𝑑 = √
(𝑛1 − 1) ∗ 𝑠1

2 + (𝑛2 − 1) ∗ 𝑠2
2 + ⋯ (𝑛𝑘 − 1) ∗ 𝑠𝑘

2

𝑛1 + 𝑛2 + ⋯ + 𝑛𝑘 − 𝑘
 

 

k = number of samples 

nk = population in each sample 

sk = standard deviation for sample population 

spooled = pooled standard deviation 

The standard deviations contributing to the pooled estimate were obtained by doing a one-way estimate of MAP 
performance by trial.  The means and standard deviations for this are highlighted in Table 4. 27.  Note that Post-
Train is the largest mean indicating the best performance in terms of the highest likelihood of success. 

 

Table 4. 27: Means and standard deviations of Oneway analysis of performance by trial for power and sample size 
evaluation 
 

Level Number Mean Std Dev 

Control 18 0.111111 0.323381 

Post-Train 9 0.777778 0.440959 

Pre-Train 11 0.272727 0.467099 

 

This table uses the numeric values of 0 

(false) and 1 (true) to calculate the mean 

and Std Dev as an indication of the central 

tendency and dispersion of the values 
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The resulting pooled standard deviation equals 0.458778.  The calculated sample size for a power of 0.8 is 29.  The 
individual sample size is estimated by n/k leading to 29/3 or about 10 per level.  This is compared to an actual 
sample size of 11 for pre-training and 9 for post-training.  Using this same methodology, a power of 0.78 results in  
a sample size projection of 27 or 9 samples per level.  Based on this assessment, the sample size of each group is 
suitable for making statistically relevant conclusions, particularly considering the constraints of other factors of the 
research design. 
 
Overall, 26 (77.6% of the total) of the participants were not successful in completing the MAP, 12 or 23.4% were 
successful.  Within the Unsuccessful category, 62% were from the control group, 30% were from the pre-training 
(pre-train) group and the remainder were from the post-training (post-train) group.  Conversely, 58% of the 
successful category were made up of the post-train Treatment group, with 25% and 17% respectively from the 
post-train Treatment group and Control group.   

Table 4. 28 provides a tabulation of the percent contributions for the Control and Treatment groups for both the 
Successful and Unsuccessful completion of the MAP by the nurses.  The first column represents the percentage of 
a groups MAP successful performance relative to the rest of the groups.  For example, of all the successful 
completions, the Control Group contributed 16.67% of them and they did not use the app.  The logic for the 
second column is similar but refers to unsuccessful attempts.  Columns 3 and 4 represent the contribution to the 
overall percentage.  Again, as an example, the post-training treatment group had 18.4% of the 38 groups 
successfully complete the exercise with significant use of the app, whereas only 7.9% of the pre-training group 
performed in the same way.   

With that as background, several observations can be made using Table 4. 28 and Table 4.26: 

1) The majority of successes, <73%, used the app to a significant extent 
2) Training (or familiarity with the app) appears to play some role in the app use 
3) The use of information appears to contribute to greater success rates between the Control group and 

Treatment group 
4) The degree to which the app is used (i.e. the amount of JIT information) seems to influence the success 

rate; the more JIT information yields greater success. Said differently, limiting JIT information leads to 
lower MAP performance 

 

Table 4. 28: Percent contributions for the control and treatment groups for both the successful and unsuccessful 
completion of the MAP by the nurses 

   Relative Percent of MAP 
Performance 

Percent of Overall Total 

Group 
 

INFO Column 1 
Column 
%(Success) 

Column 2 
Column 
%(Unsuccess) 

Column 3 
% of 
Total(Success) 

Column 4 
% of 
Total(Unsucc) 

Control 
 

No app use 16.67% 61.54% 5.26% 42.11% 

Limited app use - - - - 

Significant app use - - - - 

Treatment Post-train No app use 0.00% 0.00% 0.00% 0.00% 

Limited app use 0.00% 7.69% 0.00% 5.26% 

Significant app use 58.33% 0.00% 18.42% 0.00% 
 

No app use 0.00% 19.23% 0.00% 13.16% 

Pre-train Limited app use 0.00% 7.69% 0.00% 5.26% 
 

Significant app use 25.00% 3.85% 7.89% 2.63% 

  Percent Totals 100% 100% 31.57% 68.42% 
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Detailed Analysis 

To evaluate overall response to the use of JIT information, a binary logit model scoring against if the nurse 
successfully performed the MAP (variable=Performance) and measuring the effect of the use of JIT information in 
the form of the app.  The model used all 38 observations. Of the total observations, 26 were unsuccessful, 12 were 
successful (Table 4. 29). Of the 12 that completed successfully, 10 used the app to some degree.  Of the 26 
unsuccessful, four used the app in some fashion (Table 4. 28 above). The model converged appropriately.  

Table 4. 30 provides a null model set that illustrates and assumes no effect from the covariate of using the app 
leads to 68.4% classification accuracy.  Furthermore, the frequency of 26 and 12 are represented as statistically 
significantly different from one another in Table 4. 31 shown by the significance of the Walds test.  The 
interpretation of the Exp(B) interpretation is that there is a 53.8% greater likelihood of not being successful 
without outside intervention46.  The Variables Not in eqn. row of this table shows that USEDAPP, the variable 
identifying whether or not the nurse used the app, is significant at the alpha=0.05 level. 

With the previous information setting the stage for what the results are with no effect from using the app, the 
information in Table 4. 32 shows the output from the binary logistic regression performed after the treatment (i.e. 
information supplied).  The use of the app increases the predicted likelihood of successfully completing the MAP as 
seen below in the bottom right section of Table 4. 32.  Based on the analysis, the number of unsuccessful events 
predicted is 21 versus the 26 observed in the actual outcomes.  The number of statistically predicted successful 
completions increases to 10 from 0 in the control.  The model failed to predict 2 outcomes, that is there were 2 
cases observed and the model did not predict and it also failed to predict 2 successful events.  The 10 predicted 
successful events associate well with the value in the Treatment cases which is also 10.  The predictive capacity by 
using the app increases by a significant 12% over the null model.  

The USEDAPP variable is statistically significant at the 0.05 alpha value as provided by the Wald statistic (Table 4. 
33).  The odds ratios of 21.0 infers that the use of the JIT information app has a 21 times greater likelihood of 
successfully completing the MAP when using the app, controlling for other factors within the analysis. 

 

Table 4. 29: Summary response profile for null model set for use of the app 

Response Profile 

Ordered 
Value Performance 

Total 
Frequency 

1 0: Unsuccessful MAP 26 

2 1: Successful MAP 12 

 

Table 4. 30: Classification Table 

                                                                 
46 https://www.youtube.com/watch?v=zdJhydkcqv4 

 

Observed 

            Selected Casesb 
 Predicted  

 Performance  

 Unsuccessful Successful 
Percentage 
Correct 

Step 0 Performance Unsuccessful 26 0 100.0 

Successful 12 0 0.0 

Overall Percentage   68.4 
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Table 4. 31: Variables in the equation step 0 

 B S.E. Wald df Sig. Exp(B) 

Step 0 Constant -.773 .349 4.908 1 .027 .462 

 Variables Not in eqn. USED APP   1 .000  

 

Table 4. 32: Crosstabulation of performance vs. info use for chi-square 

 
Information Use 

Total no yes 

Performance unsuccessful Observed Count 5 0 5 

Expected Count 1.7 3.3 5.0 

success Observed Count 0 10 10 

Expected Count 3.3 6.7 10.0 

Total Observed Count 5 10 15 

Expected Count 5.0 10.0 15.0 

 

Table 4. 33: Classification table for inclusion of USEDAPP 

Table 4. 34: Variables in the equation step 1 

 B S.E. Wald df Sig. Exp(B) 

Step 1a USED APP 3.045 .921 10.935 1 .001 21.000 

Constant -2.351 .740 10.096 1 .001 .095 

 
 
 
 
 
 
 
 
 
 
 
 

 

Observed 

            Selected Cases 
 Predicted  

 Performance  

 Unsuccessful Successful 
Percentage 
Correct 

Step 1 Performance Unsuccessful 21 5 80.8 

Successful 2 10 83.3 

Overall Percentage   81.6 
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In order to determine if the degree to which the app was used, and therefore the amount of information used, 
made a difference in the outcomes, the amount of usage of the app was measured during the MAP process.  This 
data is based on a qualitative assessment of the degree to which the nurses used the app during the performance 
of the scenario and was recorded as “no use”, “limited use”, or “significant use”.  Since the comparison is being 
done on the degree to which the app is used, data from the control group was removed and only the treatment 
group was evaluated.  The “no use” observations were also excluded since the comparison is being focused on the 
“limited use” and “significant use” observations.    A chi-square analysis was done using SPSS v.25 and was 
performed between the response variable (performance) and information use (InfoUse)(Table 4. 34). 
 
As seen in Table 4. 34, the observed count for not being successful in performance of the MAP and using the lower 
amount of information was 5, whereas the expected count of no association, that is no association between 
performance information use, would be 1.7.  The expected value for being successful in completing the MAP with 
no information is 3.3, however, the observed value was that there were zero occurrences.  In further evaluation of 
the table, the observed count for being successful in the MAP while using information was 10, while the expected 
value would be 6.7.  There were no observations of being successful completing the MAP at the higher levels of 
information usage.   

The chi-square results, in Table 4. 35, indicate statistically significant results at the alpha = 0.05 level as noted in 
Asymptotic Significance column, which is the significance value indicator. Examining the Fisher’s Exact test with a 
significance value below 0.05, indicates that the null hypothesis is not valid and therefore there is an association 
between information use at the higher level and performance in the MAP. That is, performance is dependent on 
the amount of information used. 

Examining results for nominal association in Table 4. 36, Phi is used since the test was for a 2x2 chi-square.  The 
significance value is less than the alpha value of 0.05 and the effect value is 1.000.  This high effect size can be 
explained by examining the detailed data for Performance and Info Use; there is direct correspondence between 
the amount of information used and successful performance resulting in the high level of association. 
The relationship between duration of the process and overall success was noted earlier.  Duration of the process is 
directly influenced by its early termination.  To evaluate this, the control group and each of the treatment group’s 
duration of performance was considered.  The average duration for the control group was 11:43 (minutes). The 
average duration for the treatment group was 9:06 with the post-training group being 8:13 and the pre-training 
group duration averaging 9:49. The durations were also examined by successful and unsuccessful performance; 
successful performance observations had an average duration of 7:32 and unsuccessful averaged 11:38.  Two-
sample t-tests were performed on both the duration by trial and performance durations and the p-values were 
below the 0.05 alpha confirming that a significant difference does exist.  This leads to the conclusion in case that 
JIT information lead to earlier decision making, as well as, an overall increase in successful performance. 

 

Table 4. 35: Chi-square results for performance vs. info use 

 Value df 

Asymptotic 
Significance 

(2-sided) 
Exact Sig. (2-

sided) 
Exact Sig. (1-

sided) 

Pearson Chi-Square 15.000a 1 .000   

Continuity Correction 10.838 1 .001   

Likelihood Ratio 19.095 1 .000   

Fisher's Exact Test    .000 .000 

N of Valid Cases 15     
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Table 4. 36: Symmetric measures test for association for performance * info use for chi-square. 
 

 Value 
Approximate 
Significance 

Nominal by Nominal Phi 1.000 .000 

Cramer's V 1.000 .000 

N of Valid Cases 15  

 

Analysis of JIT information effects on scenario duration 

A more detailed analysis of the differences of durations among the trial groups validates these findings.  Four 
separate T tests were performed to compare the overall treatment group with the control and to compare each of 
the treatment subgroups (pre and post training) with the control group.  Time was converted to a decimal format 
using excel in order to simplify the analysis.  Table 4. 37 provides the summary tables of all the T-Test 
combinations.  Each of the p values are less than the alpha=0.05 with the exception of the T test of the pre and 
post training.  This is likely the influence of the JIT intervention.   

 

Table 4. 38 provides a one-way ANOVA of the durations for each of the groups.  The p value of 0.0081 indicates a 
significant difference between the values.  Figure 4. 38 provides a graphical representation of the values for each 
of the groups which highlights the differences in means and standard deviations.  The analysis of means in Figure 
4. 39 indicates that the control and post training groups fall outside the UDL/LDL, demonstrating the effect of the 
JIT information on the duration of the scenario execution. 
 
Figure 4. 40 highlights the mean and standard deviation for the control group and overall treatment groups.  Table 
4. 39 is the ANOVA for this comparison and indicates statistically significant differences between the groups at an 
α=0.05 versus the p value of 0.0047.  The Analysis of Means in Figure 4. 41 indicates divergence of both groups 
from the calculated UDL/LDL emphasizing the difference in durations of the two groups. 
The design of the simulation scenario had the use and understanding of lab results as a key factor in successful 
performance.   Considering the frequency of checking labs first (Table 4. 40), the control group had the lab checked 
seven times versus missing checking the labs 11 times.  A chi-square test (Table 4. 41) comparing the association of 
the control/treatment groups with checking of lab results indicates that this is significant at the 0.05 alpha value; 
there is, in fact, a statistically significant difference between how the control group and treatment group checked 
on lab results.  The Crammer’s V result is 0.315 indicating a medium level effect size implying that using the JIT app 
had a moderate effect on checking the labs. 
 
The next consideration is the effect the JIT might have on the understanding of the lab results and what influence 
it might have on the outcome of the MAP process.  As with the activity of checking the lab results, a chi-square test 
was performed.  The observed versus expected table (Table 4. 42) indicates the difference in the occurrence of the 
control and treatment group’s values; as expected, fewer in the control group understood the lab results.  The 
following table, Table 4.43, provides the Chi-square results.   Here the results are more dramatic. The association 
of the control/treatment groups with understanding of lab results indicates that this is significant at the 0.05 alpha 
value; there is, in fact, a statistically significant difference between how the control group and treatment group for 
the understanding of lab results.  The Crammer’s V result is 0.462 indicating a moderate to large effect size 
implying that the consideration of using the JIT app had a moderate effect on checking the labs. 
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Table 4. 37: T test calculations for time comparison 

Control-Post training T test 

Trial N Mean StDev SE Mean 

Control 18 0.488 0.115 0.027 

Post train 9 0.343 0.120 0.040 

T-Value DF P-Value 
  

3.01 15 0.009 
  

Pre train-Post training T test 

Trial N Mean StDev SE Mean 

Post Train 9 0.343 0.120 0.040 

Pretrain 11 0.4090 0.0915 0.028 

T-Value DF P-Value 
  

-1.37 14 0.193 
  

Pre train-Control T test 
Descriptive Statistics: Duration 

Trial N Mean StDev SE Mean 

Control 18 0.488 0.115 0.027 

Pretrain 11 0.4090 0.0915 0.028 

T-Value DF P-Value 
  

2.05 24 0.05 
  

All Treatments-Control T test 

Trial Total N Mean StDev SE Mean 

Control 18 0.488 0.115 0.027 

Treatment 20 0.379 0.108 0.024 

T-Value DF P-Value 
  

3.01 34 0.005 
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Figure 4. 38: Mean and standard deviation for duration by trial 

 

Table 4. 38 : Analysis of variance for duration by trial 
 

Source DF Sum of 
Squares 

Mean Square F Ratio Prob > F 

Trial 2 0.13473575 0.067368 5.5519 0.0081* 
Error 35 0.42469931 0.012134   
C. Total 37 0.55943507    

 

 

 
Figure 4. 39: Analysis of means for duration by trial 
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Figure 4. 40: Mean and standard deviation for Duration by Total Trial 

Table 4. 39: Analysis of Variance for Duration by Total Trial 

Source DF Sum of 
Squares 

Mean Square F Ratio Prob > F 

Trial Total 1 0.11283748 0.112837 9.0958 0.0047* 
Error 36 0.44659758 0.012405   
C. Total 37 0.55943507    

 
 

 
Figure 4. 41: Analysis of means for duration by total trial 

Table 4. 40: Labs checked crosstabulation 

 
 

Control vs. Treatment 
Total Control Treatment 

Labs Checked No Observed Count 11 6 17 

Expected Count 8.1 8.9 17.0 

Yes Observed Count 7 14 21 

Expected Count 9.9 11.1 21.0 

Total Observed Count 18 20 38 

Expected Count 18.0 20.0 38.0 
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Table 4. 41: Chi-square test comparing control/treatment group with occurrence of checking lab results 

 Value df 

Asymptotic 
Significance 

(2-sided) 
Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) Point Probability 

Pearson Chi-Square 3.709a 1 .05 .101 .05  

Fisher's Exact Test    .101 .05  

N of Valid Cases 38      

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 8.05. 
 

Table 4. 42: Labs understood crosstabulation 

 
Control vs. Treatment 

Total Control Treatment 

Labs Understood No Observed Count 16 9 25 

Expected Count 11.8 13.2 25.0 

Yes Observed Count 2 11 13 

Expected Count 6.2 6.8 13.0 

Total Observed Count 18 20 38 

Expected Count 18.0 20.0 38.0 

 
 

 

Table 4. 43: Chi-square test comparing control/treatment group with occurrence of understanding lab results 

 Value df 

Asymptotic 
Significance (2-

sided) 
Exact Sig. (2-

sided) 
Exact Sig. (1-

sided) 

Pearson Chi-Square 8.108a 1 .004   

Fisher's Exact Test    .006 .005 

N of Valid Cases 38     

 
 

Table 4. 44: Used app and labs understood crosstabulation 

 
USED APP 

Total No Yes 

Labs Understood No Observed Count 21 4 25 

Expected Count 15.1 9.9 25.0 

Yes Observed Count 2 11 13 

Expected Count 7.9 5.1 13.0 

Total Observed Count 23 15 38 

Expected Count 23.0 15.0 38.0 
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Table 4. 45: Chi-square test comparing Understanding labs and use of the JIT app 

 Value df 

Asymptotic 
Significance (2-

sided) 
Exact Sig. (2-

sided) 
Exact Sig. (1-

sided) 

Pearson Chi-Square 16.854a 1 .000   

Fisher's Exact Test    .000 .000 

N of Valid Cases 38     

 
 

One final analysis was done considering the interrelationship of use of the app on understanding the lab 
results.  The results are presented in Table 4. 44 and Table 4. 45.  As can be seen, and what would be 
expected from the previous analyses, is that there is an association between use of the app and the 
understanding of the lab results.  The p value is well below the 0.05 alpha threshold and the Crammer’s V is 
calculated at 0.666 indicating a large effect of use of the app on the understanding of the lab results. 

A binary logit regression was performed and provided a p value of <0.001, and odds ratio (Exp(B)) of 38.33 
and Nagelkerke R square of 0.561.  These results indicate a significant benefit provided by use of the smart 
phone app in understanding the laboratory results (detailed results in Appendix 1). 

Analyzing Control Group versus Treatment Group 

The evaluation of Control vs. Treatment groups yielded the results seen below.  In this analysis there is no 
discrimination between pre and post-training.  Table 4.46 provides the null model which uses no predictive 
variables (i.e. does not include the effect of treatment, or, it is an intercept only model).  This table indicates what 
the expected results would be.  Without the effect of treatment, the prediction would be that 26 of the 
observations would result in unsuccessful completion of the MAP and 12 of the attempts would result in successful 
attempts. The null model provides 68.4% predictive capability.  

The only variable considered in the model is the consideration of treatment versus non-treatment (control).  Table 
4. 47 illustrates what significance the Treatment value will play when it is entered into the logistic regression.  At 
an alpha of 0.05, the significance of Treatment allows us to reject the null hypothesis that there is not an influence 
contributed by the Treatment. 

Table 4. 48 considers the performance of the logistic regression with inclusion of the Treatment variable, the 
significance value of 0.008, which is less than the alpha of 0.05, indicates that the influence of the Treatment is a 
good predictor for the regression results. 
 
The output also provides a Nagelkerke R2 of 0.240.  This value shows how much of the variance in the dependent 
variable is a result of the effect of the Treatment variable in the regression.  In this instance, 24% of the variance is 
explained by the role of Treatment.  While not extremely large, the effect is substantial enough to be of value. 

The classification table results after incorporating treatment indicates better prediction of the individual outcomes, 
while the overall predictive capability of 68.4% remains the same as the null hypotheses (Table 4. 49) 

Based on this analysis, the conclusion can be made that the effect of the variable Treatment (addition of 
information) does have a statistically significant effect on the MAP outcome.  Furthermore, the coefficient of 2.079 
indicates that there is a significant effect between the control group and the treatment group in terms of the MAP 
being accomplished correctly.  As noted previously, this analysis considers just the effect of overall use of the app 
and does not include pre- and post-training effect.  As noted in the assumption and limitations section the use of 
information in this context conveys the implication that the insertion of information includes the ability to 
effectively translate it into action. 
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Table 4. 46: Classification table for effect of treatment 

 

Observed 

Predicted 
 

PERFORMANCE 
Percentage 

Correct 
 Unsuccessful Successful  

Step 0 PERFORMANCE Unsuccessful 26 0 100.0 

Successful 12 0 0.0 

Overall Percentage   68.4 

 
 

 
Table 4. 47: Variables not in the equation for treatment 

 Score df Sig. 

Step 0 Variables Treatment 6.631 1 .010 

Overall Statistics 6.631 1 .010 

 
 

Table 4. 48: Omnibus tests of model coefficients for treatment 

 Chi-square df Sig. 

Step 1 Step 7.114 1 .008 

Block 7.114 1 .008 

Model 7.114 1 .008 
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Analysis of Training Effect 

A chi-square test was performed to determine if an association exists between the amount of training and the 
successful completion of the MAP.  Table 4. 50 provides the cross tabulation of the chi-square test, the expected 
count, that is, the responses we would get if there is no association, are 5.5 for each value of performance for Pre-
training.  The expected count for Post-training is 4.5 for each value of performance.  The observed counts are 
notably different than the expected counts. 
 
Table 4. 51, the Asymptotic Significance which serves as the p-value 0.025, is clearly less than the α=0.05 
therefore, the level training effect is statistically significant and there is an association between training level and 
performance.  The likelihood ratio is also significant at a value of 0.021.  The Fisher’s Exact test of 0.07 is however 
not significant, at an alpha of 0.05. The differences in significance could be a function of sample size, with two of 
three indicators implying significance, the assumption is that the differences are significant. This assumption is 
corroborated later in the binary linear regression analysis.  The Phi value of 0.503 indicates that the amount of 
training has a strong effect on performance. 
 
Binary logistic regression was also performed to help understand the training effect further.  The initial null model 
(Table 4. 54) predicts a 50% chance of prediction with no predictor variables in the model. 
 
Table 4.52 shows the null table. Table 4. 53 shows the result in the classification table with the inclusion of the 
predictor variable of training.  The value increases to 75% compared to the 50% of the classification table without 
the inclusion of the predictor variable.  The only variable considered in the logistic regression is pre versus post 
training.  Table 4. 54 illustrates what the significance of the Training value is in the logistic regression.  At an alpha 
of 0.05, the significance of Training at 0.025 allows us to reject the null hypothesis that there is not an influence 
contributed by the Training. 
Table 4. 55 considers the performance of the logistic regression with inclusion of the Training variable, the 
significance value of 0.021, which is less than the alpha of 0.05, indicates that the influence of the Training is a 
good predictor for the regression results. 
 
 

Table 4. 49: Effect of treatment variable (Control versus Treatment groups) 

 B S.E. Wald df Sig. Exp(B) 
95% C.I. for EXP(B) 
Lower Upper 

Step 1a Treatment 2.079 .873 5.671 1 .017 8.000 1.445 44.297 

Constant -2.079 .750 7.687 1 .006 .125   

 

Table 4. 50: Crosstabulation for training * PERFORMANCE 

 
PERFORMANCE 

Total Unsuccessful Successful 

Training Pre-training Observed Count 8 3 11 

Expected Count 5.5 5.5 11.0 

Post-
training 

Observed Count 2 7 9 

Expected Count 4.5 4.5 9.0 

Total Observed Count 10 10 20 

Expected Count 10.0 10.0 20.0 

 
 

Table 4. 51: Chi-square test for training amount effect on performance 
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 Value df 

Asymptotic 
Significance (2-

sided) 
Exact Sig. (2-

sided) 
Exact Sig. (1-

sided) 

Pearson Chi-Square 5.051 1 .025   

Continuity Correction 3.232 1 .072   

Likelihood Ratio 5.300 1 .021   

Fisher's Exact Test    .070 .035 

Linear-by-Linear Association 4.798 1 .028   

N of Valid Cases 20     

Nominal by Nominal       Phi .503  .025c   

Cramer's V .503  .025c   
 

Table 4. 52: Classification table for effect of training effect without predictor variable 

 

Observed 

Predicted 
 PERFORMANCE Percentage 

Correct  Unsuccessful Successful 

Step 0 PERFORMANCE Unsuccessful 0 10 .0 

Successful 0 10 100.0 

Overall Percentage   50.0 

 

Table 4. 53: Classification table for effect of training effect with predictor variable 

 

Observed 

Predicted 
 PERFORMANCE Percentage 

Correct  Unsuccessful Successful 

Step 1 PERFORMANCE Unsuccessful 8 2 80.0 

Successful 3 7 70.0 

Overall Percentage   75.0 

 
 

Table 4. 54: Variables not in the equation for training 

 Score df Sig. 

Step 0 Variables Training 5.051 1 .025 

Overall Statistics 5.051 1 .025 

 
 

Table 4. 55: Omnibus tests of model coefficients for training 

 Chi-square df Sig. 

Step 1 Step 5.300 1 .021 

Block 5.300 1 .021 

Model 5.300 1 .021 
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The output also provides a Nagelkerke R2 of 0.310 (Table 4. 56).  This value shows how much of the variance in the 

dependent variable is a result of the effect of the Treatment variable in the regression.  In this instance, 31% of the 

variance is explained by the role of Treatment.  While not extremely large, the effect is substantial enough to be of 

value. 

The odds ratio and coefficient are displayed in Table 4. 52.  The odds ratio of 9.333 implies a magnitude of over 
nine times greater likelihood of having a successful outcome of MAP completion with a beta coefficient of 2.234. 
 
Based on this analysis, the conclusion can be made that the effect of the variable Training (pre vs post training) 
does have a statistically significant effect on the MAP outcome.  Furthermore, the coefficient of 2.234 indicates 
that there is a significant effect between the control group and the treatment group in terms of the MAP being 
accomplished correctly.  
 
Recapitulation 

The goal of the clinical case study was to ascertain what role JIT information might play in affecting nurse 
performance in the MAP process.  The fundamental conclusion can be made, based on the analysis of clinical case 
study information, that the use of the app and the associated access to JIT information increased the likelihood of 
success of the MAP. 

The results and observations from the analyses demonstrates the following: 

• The treatment group, using an app providing JIT information, had overall improved MAP outcomes 
measured than the control group which had no access to the JIT app. 

• There is a direct association between using an app providing JIT information and improvement in the 
outcome of the MAP process. 

• The difference in MAP outcomes for pre and post-training was statistically significant, post-training having 
better performance, and it can be used as an indicator that the degree to which information is used 
improves outcomes. 

• Early termination of the scenario by the nurse to check with the physician on the proper dosage 
influenced the completion of other steps of the MAP process. 

• Use of the app improved the checking of lab values and the understanding of the implications of lab 
values and lead to improved decision making for the MAP. 

 

Table 4. 56: R-Square coefficient for training 

Step -2 Log likelihood 
Cox & Snell R 

Square 
Nagelkerke R 

Square 

1 22.426a .233 .310 

 

Table 4. 57: Effect of training variable  

 B S.E. Wald df Sig. Exp(B) 
95% C.I. for EXP(B) 
Lower Upper 

Step 1 Training 2.234 1.049 4.530 1 .033 9.333 1.193 72.991 

Constant -.981 .677 2.099 1 .147 .375   
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The CCS used a modest sized cohort to assess the role of providing JIT information in MAP performance.  The size 
of the groups (control and treatment) and the sub-group (pre and post training subgroup within the treatment 
group) were evaluated retrospectively and were determined to be of appropriate size to have sufficient power of 
0.8 to provide meaningful statistics, although the post-training sub-group was at the margin of meeting the 
number of samples. 

A primary goal of the CCS was to inform the development of the agent-based modeling effort and to confirm the 
hypothesis that JIT information would be effective in increasing the effort of administering medication.  The 
foregoing analyses does provide credence to the hypothesis that the application of JIT information is significant in 
improving overall MAP success.  While the methodology was not designed to identify the effect of information on 
each step, it has been proven to increase performance in several key process steps. While one must be cautious 
generalizing the benefit of JIT information for all of the MAP steps, it would not be unreasonable to assume that 
information specifically tailored for each MAP process step would have some positive effect in reducing 
medication administration error and improving MAP success rates. 
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Chapter 5 

Summary of Findings 

Revisit of the Goal 

There are two separate but related parts of this research effort; a clinical case study that assesses the effect of JIT 
information on the successful completion of the administration of medication, and the construction, verification 
validation of an agent-based model that represents the nurse MAP.  The primary purpose of the clinical trial was to 
provide the underpinning confirmation of the impact of JIT on nurse performance. The intent of building an ABM 
was to first establish that an ABM could be constructed that effectively reflected nurse performance during the 
medication administration process, and then to use the agent-based computer model to assess the effect of JIT 
information on the likelihood of success in the MAP. 

Clinical Case Study 

A clinical study was developed to assess the effect of JIT information via a smartphone app on the performance of 
administering medication by nurses.  The study used student nurses in their senior year and the HITS lab to 
perform a specifically designed scenario for the administration of medication.    This approach provided controlled 
experimental conditions that allowed direct monitoring via audio and video of the test subjects performance: the 
physical environment, the scenario, and the “patient” mannequin were identical for each test run.  The scenario 
was detailed, scripted, rehearsed and conducted in the same fashion for each run.  Using student nurses afforded 
consistency of each of them having approximately the same level of experience; the scenario was performed by 
small groups of two to three nurses.  The testing took place over two semesters, the fall semester of 2015 and the 
spring semester of 2016.  The clinical study was performed in accordance with IRB guidelines.  There was a total of 
38 runs of the scenario, eighteen of which served as the control group and were not provided the JIT smartphone 
app but had access to all other information including the EMR/MAR. The remaining 20 runs were the 
treatment/response group, which used the smartphone JIT app.  The response group was also divided into the pre-
training group, which was provided a brief overview of the app and the post training group which was given the 
same overview, but a worksheet to complete while using the app. 

The clinical evaluation for the effect of JIT information on the MAP demonstrated that the information obtained 
via the app increased the likelihood of the nurse performing the MAP correctly in contrast to the control group 
which did not have access to information via the app.  Furthermore, the degree to which the app was used 
provided different outcomes.  Increased use of the app resulted in improved likelihood of success.  The initial 
assessment, comparing the control group to the treatment group, demonstrated increased likelihood of successful 
MAP performance with an odds ratio of 8.00 implying an 8-fold increase in likelihood of successful MAP 
completion when considering the Treatment variable. 

While all of the treatment groups had access to the use of information via the app, not all of the subjects used it, 
or if they did use it some did not use it effectively.  If one considers those who used the app versus those who did 
not, the results show significant improvement in performance for those that used the app.  The use of the app 
results in an odds ratio of 21 for increased performance of using the app, and the beta constant of 3.045 when the 
dependent variable is successful at completion of the MAP process, thereby demonstrating increased nurse 
performance for those that used the app.    

The treatment group had two sub groups, the pre-training group and the post-training group.  The pre-training 
group was given a brief verbal overview and approximately 15 minutes to use the JIT app prior to the participating 
in the scenario.  The post-training group was also provided the verbal overview but also completed a worksheet 
that required them to use the JIT app.  The amount of training had a statistically significant impact on 
performance, influencing both the use of the JIT app as well as increasing their likelihood of success in 
performance of the medication administration scenario.  The chi-square and likelihood ratio results of 0.02 
indicate statistical significance at the α=0.05.  The binary logistic regression provided a significance level of 0.33 
and an odds ratio of 9.33.   
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Other insights have been gained from the clinical portion of the research.  An observation obtained from 
evaluating the performance of the control group was the lack of use and understanding of the patient’s laboratory 
results.  In the clinical scenario used, laboratory results provided key information on the correct decision path.  The 
response group demonstrated increased review with a chi-square significance value of 0.05 and a better 
understanding, with a chi-square significance of 0.00, for the laboratory results.   

The use of the app resulted in shorter scenario times indicating the nurses were reaching decisions more quickly 
when information from the app was used.  Both the t test and ANOVA confirmed a statistically significant 
difference in the duration of the scenarios between the control and treatment groups.  The implication is that the 
JIT information can serve as an effective decision-making aid helping to guide the nurse to better informed 
decisions more quickly. 

A primary goal of the CCS was to inform the development of the agent-based modeling effort and to confirm the 
hypothesis that JIT information would be effective in increasing the effort of administering medication.  The 
foregoing analyses does provide credence to the hypothesis that the application of JIT information is significant in 
improving overall MAP success:  specifically, the app was successful in transferring information to the user and the 
information improved overall performance in MAP execution.  While the methodology was not designed to 
identify the effect of information on each step, it has been proven to increase performance in several key process 
steps. While one must be cautious generalizing the benefit of JIT information for all of the MAP steps, it would not 
be unreasonable to assume that information, specifically tailored for each MAP process step, would have some 
positive effect in reducing medication administration error and improving MAP success rates. 

Medication Administration Process Model 

A computer simulation that modeled the nurse related process of medication administration was developed using 
the program AnyLogic.  An agent-based modeling approach was used because it afforded the ability to have 
multiple interactions among a variety of entities and allowed for incorporation of multiple attributes and a 
dynamic structure for the interactions amongst the objects within the model. 

Three agent types were used in the model: nurses, patients and medications.  Each agent type had a set of 
attributes that conveyed individuality to each particular agent.  The attributes modified the agent’s behavior and 
influenced their performance while executing the MAP. The numbers of nurse and patient agents where held 
constant while the number of medication agents were allowed to change depending on the attributes of the 
patients and nurses.  The interactions between patients and nurses changed over time as the simulation ran, the 
number of patients a nurse agent would have was assigned randomly at the start of the simulation run.  The 
number and type of medications assigned to a patient was assigned randomly based approximately on a uniform 
distribution.  Nurse agents were assigned to one of two shifts; shift duration was the length of time a nurse agent 
was allowed to distribute medications to their allotted patients. 

The MAP portion of the model was made up of each of the key MAP steps medication check, MAR check, dose 
check, patient check, route check, and time check.  In a figurative sense, for every medication, a nurse agent would 
pass sequentially through each of this process steps.  A probability engine inside each step would determine the 
likelihood of successful completion of each step.  At the end of all of the steps a composite Likelihood Index would 
be calculated that determined the overall probability of the nurse agent’s successful completion of the overall 
medication administration process.  The effect of agent attributes and the impact of JIT information was controlled 
as part of the overall simulation process. 

The validation and verification of the model was performed using a variety of methods.  Numerous tracking 
variables were built into the model in order to track its execution and ensure that the model’s processes 
performed as intended.  Considerable effort was placed on statistical analysis of simulation output to verify the 
model’s performance. 

Six simulations were designed to evaluate model performance and to represent the influence of JIT information on 
nurse agent performance.  A combination of shift durations and total medication amounts (which influences 
medications per nurse) was used.  Three different durations and two levels of total medication amounts were 
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selected, giving a total of six scenarios that were run and analyzed.  The levels for duration and total medications 
were selected to represent amounts that were believed to stress the model, as well as appropriately reflect levels 
that represent amounts found in a typical acute care setting. 

Each of the six scenarios performed largely as expected.  The shorter duration shift time reflected a higher rate of 
incomplete medication runs and lower overall likelihood of success probabilities.  As duration increased, the 
overall probability of success increased.  As the number of total medications increases, the overall likelihood of 
success decreases.  The lower time amount was found to have considerable “jitter” in the response due to 
incomplete delivery of medications which was due to the short time period. 

The influence of JIT information was done via a multiplier.  As with the clinical trial, information had a dramatic 
effect on nurse agent performance.  The rate of increase followed a polynomial increase, with the rate of 
performance increase, decreasing as more information was inserted into the system.  As the overall performance 
increases, the associated standard deviation decreases by roughly a proportionate amount.  This is expected since 
as more information is injected into the system, overall performance congregates near 1.00 which depresses the 
variance.   

With all six simulations, there were over 950,000 lines of data with each line having over 100 variables resulting in 
95 million data elements.  It was necessary to reduce the data set to a manageable amount for more detailed 
analysis.  One simulation was selected that best represented model performances.  This selection was based on a 
comparative assessment within and among the six simulations based on a specific set of selection criteria. 

The data was appropriately tortured for this more detailed analysis.  The specific influence from each of the agent 
attributes, the performance at each MAP process step, as well as overall model performance was analyzed.  
Several specific conclusions can be reached from this analysis.  As the amount of information increases, the effect 
of agent attributes on overall performance decreases, reaching the point of no discernable impact at the highest 
level of information.  The implication here is that information can mitigate the negative effects of attributes such 
as inexperience, fatigue, higher patient loads and medication complexity on performance. 

Another consideration, discerned from the detailed analysis, is that the effect of information behaves in a 
predictable pattern.  This can be used to support building a predictive model to project outcomes based on 
changes in attributes and the addition of information. 

Each of the individual process steps was analyzed in terms of the effect of information on the overall likelihood of 
success.  The observation is that, for this model, each of the steps behaves similarly.  This result is expected since 
the model design did not add any feature that would create differences among the process steps. 

Of note is the ability of the model to consider the performance of each individual nurse agent.  The performance of 
each agent can be mapped over the profile of increasing information injection in order to see the response of the 
individual as information increases.  Of particular interest is the effect of information on the individual agents as 
the information increases.  While not the purpose of this study, it is possible that this ability can be used to 
optimize how information can be used to improve MAP processes in consideration of costs and other factors. 

In summary, the MAP computer simulation model and the data from the clinical case study align: the model 
accurately reflects nurse performance and appropriately represents the effect of JIT information.  The model 
provides utility in being able to discern overall nurse agent performance as well as individual performance of nurse 
agents.  While not explored in detail, the model appears to have inherent predictive capability as well as the ability 
to support optimization of the MAP process. 

Future Work 

This area of research provides rich opportunities for additional pursuit.  As with this research effort, the 
consideration of future work foals within two main categories: the use of simulated clinical environment like the 
HITS lab to perform clinical trials and the use of computer simulation to provide a richer understanding of real 
world phenomena and to explore a diversity of scenarios.  Ideally these two facets would be combined. 
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Clinical Simulation Environment 

The HITS lab is an excellent resource to perform modest clinical trials.  Resource limitations make it difficult to use 
multiple patients (mannequins) or test subjects.  Expansion of these resources would provide a richer environment 
to perform a wide array of clinical trials with a greater degree of experimental control while eliminating many of 
the barriers faced in using an actual clinical setting. 

As a first step constructing the clinical trial to provide differing levels of information to the test subjects in order to 
specifically assess the role of the amount of information injected into the performance of the MAP would be 
valuable.  This could be accomplished be either providing additional categories of information for different test 
groups or providing increasing content for each category of information. 

It can be envisioned to use a larger HITS-like environment with larger numbers of patients to more realistically 
represent an acute care setting.  The scenarios could be enhanced to allow multiple medications along with various 
ward types (pediatrics, medical-surgical, oncology, etc.). 

While student nurses proved to be well-suited for this study, repeating this research with nurses with various 
levels of experience and training would broaden the value of this research.  In the same vain, using multiple 
medications over a greater period of time would also add a richness to this research. 

Reconstructing the scenario to be open-ended, that is, to allow various integrated scenarios using multiple 
medications to run simultaneously would more closely mimic actual MAP operations. 

Computer Simulation 

The development of the MAP computer model, developed for this research effort, provides insight on areas for 
additional development.  ABM is an excellent simulation tool for the MAP.  Augmenting this with additional agent 
types and more interaction among the agents would provide a model that has increased capability for prediction 
and optimization.   

While prediction and optimization were not part of this research, it would be a natural next step.  The ability to use 
objective functions to measure the value and optimize to gain better efficiencies in terms of risk, cost and 
utilization of resources would be of direct benefit to the health care community. 

Expanding the model’s agents’ emergent attributes and properties would provide an enhanced approach to 
simulate the complex system of MAP.  Also, in line with this and the concept of complex adaptive systems would 
be integration of a MAP computer model with outside influences ranging from other hospital functions, such as a 
pharmacy operation, to other more general influences such as procedures, policies and economic drivers. 

Broader Context 
The use of JIT information appears to improve outcomes in high consequence environments where human 
performance plays a key role.  Areas where immediate decision making regarding factors influencing health and 
safety and rapid response, particularly where small mistakes can cascade to have a large impact could benefit from 
a JIT information approach.  Applications including nuclear, aviation, chemical processing, finance, and healthcare 
are likely candidate areas.  Conceivable small apps developed for specific purposes could provide the same positive 
benefit as was identified with this research.  Furthermore, the application of artificial intelligence into the apps 
could aid in identifying incipient errors and provide timely course correction without being obtrusive. 
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Table 4. 58: Mean, median and standard deviation (SD) values for Figure 4. 28 

Trial 
 

1 1.1 1.3 1.5 1.7 1.9 Trial mean 

498-120 mean  0.54957 0.73258 0.87278 0.94573 0.97782 0.99157 0.84501 
 

median 0.54435 0.74966 0.93588 0.99302 0.99302 0.99302 0.86816 
 

SD 0.18304 0.19773 0.14206 0.08151 0.03772 0.00683 0.10815 
         

501-480 mean  0.55043 0.732 0.87296 0.94332 0.9788 0.99146 0.84483 
 

median 0.5445 0.74695 0.93807 0.99302 0.99302 0.99302 0.8681 
 

SD 0.17926 0.19715 0.14375 0.08416 0.03624 0.00712 0.10795 
         

503-300 mean  0.54937 0.73087 0.87335 0.94514 0.97759 0.99157 0.84465 
 

median 0.54638 0.7441 0.94009 0.99302 0.99302 0.99302 0.86827 
 

SD 0.18105 0.19887 0.14292 0.08285 0.03852 0.00684 0.10851 
         

595-120 mean  0.54825 0.73168 0.87381 0.94583 0.97865 0.9917 0.84499 
 

median 0.54328 0.74763 0.93973 0.99302 0.99302 0.99302 0.86828 
 

SD 0.18248 0.19884 0.14333 0.08211 0.03668 0.00655 0.10833 
         

600-300 mean  0.54455 0.728 0.87494 0.94446 0.97811 0.99155 0.8436 
 

median 0.53644 0.74027 0.9412 0.99302 0.99302 0.99302 0.86616 
 

SD 0.18063 0.19995 0.14041 0.08184 0.03745 0.00691 0.10787 
         

600-480 mean  0.5397 0.73187 0.87515 0.94532 0.97838 0.99158 0.84367 
 

median 0.53016 0.74114 0.94413 0.99302 0.99302 0.99302 0.86575 
 

SD 0.18286 0.19812 0.1423 0.08136 0.037 0.00673 0.10806 
         

 
Info level mean  0.54698 0.73117 0.87383 0.94497 0.97822 0.99157 

 

 
Info level median 0.54085 0.74496 0.93985 0.99302 0.99302 0.99302 

 

 
Info level SD 0.18155 0.19845 0.14246 0.08231 0.03727 0.00683 
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 Table 4. 59: Tukey report for true-false trial 
  

p-Value 

Level  - Level 1 1.1 1.3 1.5 1.7 1.9 

501-480 498-120 0.9998 1 0.9993 0.5982 0.9991 0.9997 

503-300 498-120 1 0.9992 0.9801 0.9988 0.9878 0.9811 

503-300 501-480 0.9989 0.9998 0.9992 0.9513 0.9132 0.9175 

595-120 498-120 0.9979 1 0.8929 0.9998 0.9674 0.2773 

595-120 501-480 0.9799 1 0.9818 0.831 0.9982 0.1461 

595-120 503-300 0.9996 1 0.9995 0.9971 0.6814 0.7348 

600-300 498-120 0.6231 0.8484 0.945 1 1 0.9987 

600-300 501-480 0.4293 0.8923 0.9947 0.5108 0.9931 0.9814 

600-300 503-300 0.7056 0.969 1 0.9969 0.9966 0.9994 

600-300 595-120 0.8522 0.9103 1 0.9211 0.9057 0.4564 

600-480 498-120 0.0217 1 0.787 0.9991 0.9983 0.9993 

600-480 501-480 0.0069 1 0.9398 0.9689 1 0.9868 

600-480 503-300 0.0279 0.9998 0.9944 0.7321 0.8838 0.9987 

600-480 595-120 0.0544 1 0.9999 1 0.9985 0.4199 

600-480 600-300 0.5352 0.8818 0.9986 0.989 0.9884 1 

 

Table 4. 60: Steel Dwass report for true-false trial 
   

Steel Dwass p-Value 

Level  - Level 1 1.1 1.3 1.5 1.7 1.9 

501-480 498-120 0.9998 1 0.9993 0.5982 0.9991 0.9997 

503-300 498-120 1 0.9992 0.9801 0.9988 0.9878 0.9811 

503-300 501-480 0.9989 0.9998 0.9992 0.9513 0.9132 0.9175 

595-120 498-120 0.9979 1 0.8929 0.9998 0.9674 0.2773 

595-120 501-480 0.9799 1 0.9818 0.831 0.9982 0.1461 

595-120 503-300 0.9996 1 0.9995 0.9971 0.6814 0.7348 

600-300 498-120 0.6231 0.8484 0.945 1 1 0.9987 

600-300 501-480 0.4293 0.8923 0.9947 0.5108 0.9931 0.9814 

600-300 503-300 0.7056 0.969 1 0.9969 0.9966 0.9994 

600-300 595-120 0.8522 0.9103 1 0.9211 0.9057 0.4564 

600-480 498-120 0.0217 1 0.787 0.9991 0.9983 0.9993 

600-480 501-480 0.0069 1 0.9398 0.9689 1 0.9868 

600-480 503-300 0.0279 0.9998 0.9944 0.7321 0.8838 0.9987 

600-480 595-120 0.0544 1 0.9999 1 0.9985 0.4199 

600-480 600-300 0.5352 0.8818 0.9986 0.989 0.9884 1 
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Table 4. 61: Dunn report for true-false trial 

  
Dunn p-Value 

Level  - Level 1 1.1 1.3 1.5 1.7 1.9 

501-480 498-120 1 1 1 1 1 1 

503-300 498-120 1 1 1 1 1 1 

503-300 501-480 1 1 1 1 1 1 

595-120 498-120 1 1 1 1 1 1 

595-120 501-480 1 1 1 1 1 1 

595-120 503-300 1 1 1 1 1 1 

600-300 498-120 1 1 1 1 1 1 

600-300 501-480 0.967 1 1 1 1 1 

600-300 503-300 1 1 1 1 1 1 

600-300 595-120 1 1 1 1 1 1 

600-480 498-120 0.0239 1 1 1 1 1 

600-480 501-480 0.0083 1 1 1 1 1 

600-480 503-300 0.0351 1 1 1 1 1 

600-480 595-120 0.0699 1 1 1 1 1 

600-480 600-300 1 1 1 1 1 1 

 

Table 4. 62:  True-false equal variance tests

 
 
 
 
 
 
 
 
 
 
 

 

Test O'Brien[.5] Brown-Forsythe Levene Bartlett Welch's 

Information 
Injection 
Level 

Prob > F F Ratio Prob > F F Ratio Prob > F F Ratio Prob > F F Ratio Prob > F F Ratio 

1 0.1892 1.4904 0.1463 1.6373 0.151 1.6194 0.5079 0.8588 0.0037 3.4878 

1.1 0.7332 0.5569 0.3551 1.1053 0.3666 1.0845 0.8967 0.3274 0.7969 0.4726 

1.3 0.4856 0.8914 0.9203 0.2873 0.791 0.4806 0.4508 0.9443 0.8925 0.3342 

1.5 0.4428 0.9568 0.5333 0.8226 0.0668 2.0632 0.071 2.0305 0.5464 0.8043 

1.7 0.2964 1.2206 0.4229 0.9886 0.0024 3.7029 <.0001 5.7911 0.4281 0.9803 

1.9 0.6433 0.6738 0.561 0.784 0.0121 2.9234 <.0001 10.33 0.551 0.7978 
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Table 4. 63: Dunn method for joint ranking and Tukey Kramer HSD   
Tukey Kramer HSD Dunn Method for Joint Ranking 

Level  - Level 1.1 1.3 1.5 1.7 1.9 1.1 1.3 1.5 1.7 1.9 

498-120 501-480 1 0.9333 0.5982 0.9994 0.9613 1 1 1 1 1 

498-120 503-300 0.9971 0.9516 0.9988 0.71 1 1 1 1 1 1 

498-120 595-120 0.9998 0.9543 0.9513 0.4814 1 1 1 1 1 1 

498-120 600-300 0.7761 0.9683 0.9998 0.9999 0.9662 1 1 1 1 1 

498-120 600-480 1 0.9789 0.831 0.9019 1 1 1 1 1 1 

501-480 503-300 0.9996 0.9878 0.9971 0.988 0.8948 1 1 1 1 1 

501-480 595-120 1 0.9935 1 0.8094 0.3794 1 1 1 1 1 

501-480 600-300 0.8583 0.997 0.5108 0.5893 0.8797 1 1 1 1 1 

501-480 600-480 1 0.9986 0.9969 0.9571 0.7896 1 1 1 1 1 

503-300 600-300 0.9622 0.9994 0.9211 0.9981 0.8955 1 1 1 1 1 

595-120 503-300 0.9999 0.9999 0.9991 0.9978 0.9808 1 1 1 1 1 

595-120 600-300 0.8806 1 0.9689 0.9665 1 1 1 1 1 1 

600-480 503-300 0.9997 1 0.7321 0.9574 0.9389 1 1 1 1 1 

600-480 595-120 1 1 1 0.8303 1 1 1 1 1 1 

600-480 600-300 0.8518 1 0.989 0.9982 0.9999 1 1 1 1 1 

 

Table 4. 64: Means and standard deviations comparing internal control simulations for false-true, true-false and true-true 

 
II=1 false-false II=1 false-true II=1 true-false II=1 true-true 

Level Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev 

498-120 0.54802 0.181908 0.338235 0.261968 0.549566 0.183039 0.34291 0.265639 

501-480 0.550751 0.181477 0.455126 0.289493 0.550433 0.179257 0.455272 0.28855 

503-300 0.547369 0.180963 0.411632 0.288068 0.54937 0.181047 0.409654 0.28745 

595-120 0.546668 0.18064 0.336618 0.260076 0.548249 0.182483 0.337111 0.261619 

600-300 0.549679 0.182455 0.407224 0.28239 0.544548 0.180633 0.414181 0.282848 

600-480 0.550432 0.183078 0.430598 0.289155 0.539702 0.182861 0.430885 0.284693 
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Table 4. 65: Tukey Kramer method for comparison of means for  true-true  

  
p-Value 

Level  - Level 1 1.1 1.3 1.5 1.7 1.9 

498-120 595-120 0.8439 <.0001* 0.973 <.0001* 0.3037 0.1479 

501-480 498-120 <.0001* <.0001* <.0001* 0.0001* <.0001* <.0001* 

501-480 503-300 <.0001* <.0001* <.0001* <.0001* <.0001* 0.0169* 

501-480 595-120 <.0001* <.0001* <.0001* 0.0007* <.0001* <.0001* 

501-480 600-300 <.0001* 0.0165* <.0001* 0.8495 <.0001* 0.6448 

501-480 600-480 <.0001* <.0001* <.0001* <.0001* 0.0481* 0.3135 

503-300 498-120 <.0001* <.0001* <.0001* <.0001* 0.0779 0.0013* 

503-300 595-120 <.0001* 0.0137* <.0001* 1 <.0001* <.0001* 

600-300 498-120 <.0001* <.0001* 0.9993 <.0001* 0.0067* <.0001* 

600-300 503-300 0.9386 1 <.0001* 0.9914 0.9844 0.4554 

600-300 595-120 <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* 

600-480 498-120 <.0001* <.0001* <.0001* <.0001* <.0001* 0.9942 

600-480 503-300 0.0002* <.0001* 0.1997 0.0067* 0.0065* <.0001* 

600-480 595-120 <.0001* <.0001* <.0001* <.0001* <.0001* 0.7889 

600-480 600-300 0.0043* <.0001* 0.0631 0.0304* 0.0383* <.0001* 

 

Table 4. 66: Steel Dwass method for comparison of means for true-true 

  
Steel Dwass p-Value 

Level  - Level 1 1.1 1.3 1.5 1.7 1.9 

501-480 498-120 <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* 

503-300 498-120 <.0001* <.0001* <.0001* <.0001* 0.0043* 0.0005* 

503-300 501-480 <.0001* <.0001* <.0001* 0.0010* <.0001* 0.0014* 

595-120 498-120 0.9009 0.0085* 0.9894 1 0.3487 0.2129 

595-120 501-480 <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* 

595-120 503-300 <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* 

600-300 498-120 <.0001* <.0001* <.0001* <.0001* 0.0006* <.0001* 

600-300 501-480 <.0001* <.0001* <.0001* 0.0010* <.0001* 0.0865 

600-300 503-300 0.5891 1 0.9523 1 0.9995 0.7145 

600-300 595-120 <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* 

600-480 498-120 <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* 

600-480 501-480 <.0001* 0.0114* <.0001* 0.9716 0.0097* 0.0682 

600-480 503-300 <.0001* <.0001* 0.0783 0.0103* 0.0951 0.7806 

600-480 595-120 <.0001* <.0001* <.0001* <.0001* <.0001* <.0001* 

600-480 600-300 0.0032* <.0001* 0.0025* 0.0115* 0.1556 1 
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Table 4. 67: Dunn method for comparison of means for true-true 

  
Dunn p-Value 

Level  - Level 1 1.1 1.3 1.5 1.7 1.9 

501-480 498-120 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

503-300 498-120 <.0001 <.0001 <.0001 <.0001 0.0036 0.0003 

503-300 501-480 <.0001 <.0001 <.0001 0.0012 <.0001 0.0031 

595-120 498-120 1 0.0173 1 1 0.6222 0.2347 

595-120 501-480 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

595-120 503-300 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

600-300 498-120 <.0001 <.0001 <.0001 <.0001 0.0005 <.0001 

600-300 501-480 <.0001 <.0001 <.0001 0.0013 <.0001 0.1945 

600-300 503-300 1 1 1 1 1 1 

600-300 595-120 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

600-480 498-120 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

600-480 501-480 <.0001 0.0221 <.0001 1 0.0196 0.1451 

600-480 503-300 <.0001 <.0001 0.1161 0.0133 0.1427 1 

600-480 595-120 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

600-480 600-300 0.0043 <.0001 0.0033 0.0156 0.2607 1 

 

Table 4. 68:  Equal variance test for true-true 

Test O'Brien[.5] Brown-Forsythe Levene Bartlett Welch's 

Information Injection Level Prob > F Prob > F Prob > F Prob > F Prob > F 

1 <.0001* <.0001* <.0001* <.0001* <.0001* 

1.1 0.0125* 0.0293* 0.0276* 0.3328 <.0001* 

1.3 <.0001* <.0001* <.0001* <.0001* <.0001* 

1.5 <.0001* <.0001* <.0001* <.0001* <.0001* 

1.7 <.0001* <.0001* <.0001* <.0001* <.0001* 

1.9 <.0001* <.0001* <.0001* <.0001* <.0001* 

 

Table 4. 69: Mean values for probabilities of process step success 

 
Information Injection Level 

MAP Process Step 1 1.1 1.3 1.5 1.7 1.9 

probabilityOfMarCheck 0.854199 0.905865 0.96383 0.984696 0.992045 0.996209 

probabilityOfMedCheck 0.853891 0.904806 0.964349 0.984378 0.992686 0.996488 

probabilityOfDoseCheck 0.852195 0.907873 0.964104 0.984125 0.992369 0.996388 

probabilityOfPatientCheck 0.853473 0.906854 0.963017 0.984379 0.991647 0.996476 

probabilityOfRouteCheck 0.852448 0.906575 0.964041 0.983765 0.992063 0.99623 

probabilityOfTimeCheck 0.852499 0.906331 0.964874 0.98435 0.992345 0.99611 
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Table 4. 70: Pairwise comparison of probability of success of MAP process steps 
Methods: 1Tukey-Kramer HSD, 2Dunn’s, 3Steel-Dwass. 

Information Injection Level 1.1 15 1.9 

Probability Pairwise Comparison Tukey1 Dunn2 Steel3 Tukey Dunn Steel Tukey Dunn Steel 

Level  - Level 
p-

Value 
p-

Value 
p-

Value 
p-

Value 
p-

Value 
p-

Value 
p-

Value 
p-

Value 
p-

Value 

DoseCheck MarCheck 0.9721 1 0.9768 0.9783 0.348 0.1972 0.999 1 1 

DoseCheck MedCheck 0.8124 1 0.884 0.9998 1 0.9269 1 1 0.809 

DoseCheck MedDelivered 0.8942 1 0.9999 0.9977 1 0.8606 0.9995 1 0.863 

DoseCheck PatientCheck 0.9993 1 0.7414 0.9999 1 0.9784 0.9887 1 1 

DoseCheck RouteCheck 0.9973 1 0.9958 0.7881 1 0.7336 1 1 1 

DoseCheck TimeCheck 0.993 1 1 0.9999 1 1 1 1 0.8085 

MarCheck MedCheck 0.9991 1 0.9861 0.9691 1 0.8573 0.9887 1 1 

MarCheck MedDelivered 0.9999 1 1 0.9999 1 0.9254 0.9987 1 1 

MedDelivered MedCheck 1 1 0.9994 1 1 1 1 1 0.8114 

PatientCheck MarCheck 0.9994 1 0.9916 0.9252 1 0.9996 0.9924 1 1 

PatientCheck MedCheck 0.9692 1 0.9975 0.9966 1 0.7662 0.9471 1 0.9827 

PatientCheck MedDelivered 0.9899 1 0.9999 1 1 0.968 1 1 0.9694 

PatientCheck RouteCheck 1 1 0.9948 1 1 0.9999 1 0.6235 0.2946 

PatientCheck TimeCheck 1 1 0.9652 1 1 0.997 0.9986 1 0.9835 

RouteCheck MarCheck 0.9999 1 1 0.9248 1 1 1 1 0.9821 

RouteCheck MedCheck 0.9854 1 0.9699 0.9966 1 0.6716 0.9912 1 0.9993 

RouteCheck MedDelivered 0.9963 1 1 1 1 0.9866 0.9992 1 0.998 

RouteCheck TimeCheck 1 1 0.9999 0.9988 1 0.9989 0.9942 1 0.5215 

TimeCheck MarCheck 1 1 0.9971 1 1 0.9897 0.9552 1 0.9994 

TimeCheck MedCheck 0.9934 1 1 0.9334 1 0.9999 1 1 0.9993 

TimeCheck MedDelivered 0.9988 1 0.9999 0.9974 1 1 0.9999 1 0.9998 

 

Table 4. 71: Descriptive statistics for II for 503-300 

II Mean Median SD Min Max 

1 0.409654 0.337542 0.287450393 0.009452 0.993472 

1.1 0.565579 0.568452 0.292234388 0.009297 0.994015 

1.3 0.79162 0.855457 0.218455928 0.058107 0.994015 

1.5 0.897502 0.993021 0.14535118 0.150787 0.994004 

1.7 0.947884 0.993021 0.096054074 0.208027 0.994015 

1.9 0.974786 0.993021 0.05574277 0.461074 0.994015 
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Table 4. 72: Least squares analysis of agent attributes – impact by II level 1 and 1.9 for 503-300 

Term Avg. II Prob>|t| II = 1.9 Prob>|t| 

interruption[FALSE] <.0001* <.0001* 

interruption[TRUE] <.0001* <.0001* 

medicationSeverity[low] <.0001* <.0001* 

medicationSeverity[medium] <.0001* 0.3155 

medicationSeverity[high] <.0001* <.0001* 

medicationDifficulty[difficult] <.0001* <.0001* 

medicationDifficulty[intermediate] 0.0002* 0.2514 

medicationDifficulty[minimal] <.0001* <.0001* 

nurseExperience[moderate] 0.1149 0.9023 

nurseExperience[novice] <.0001* <.0001* 

nurseExperience[senior] <.0001* <.0001* 

fatigueStatus[FALSE] <.0001* <.0001* 

fatigueStatus[TRUE] <.0001* <.0001* 

PatintLoadOut[high] <.0001* <.0001* 

PatintLoadOut[low] <.0001* <.0001* 

PatintLoadOut[med] 0.0296* 0.4959 

 

True-false equal variance tests 

 Test O'Brien[.5] Brown-Forsythe Levene Bartlett Welch's 

Informati
on 
Injection 
Level 

Prob > F F Ratio Prob > F F Ratio Prob > F F Ratio Prob > F F Ratio Prob > F F Ratio 

1 0.1892 1.4904 0.1463 1.6373 0.151 1.6194 0.5079 0.8588 0.0037 3.4878 

1.1 0.7332 0.5569 0.3551 1.1053 0.3666 1.0845 0.8967 0.3274 0.7969 0.4726 

1.3 0.4856 0.8914 0.9203 0.2873 0.791 0.4806 0.4508 0.9443 0.8925 0.3342 

1.5 0.4428 0.9568 0.5333 0.8226 0.0668 2.0632 0.071 2.0305 0.5464 0.8043 

1.7 0.2964 1.2206 0.4229 0.9886 0.0024 3.7029 <.0001 5.7911 0.4281 0.9803 

1.9 0.6433 0.6738 0.561 0.784 0.0121 2.9234 <.0001 10.33 0.551 0.7978 
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Appendix 2: Medical Training Simulation ScenarioN404 6yo Pain Assess Tibia-Fibula Fx 
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Scenario developed by: Susan Henley 

Hébert, MSMS, RN, CHSE, Simulation 

Director/Clinical Faculty, Stephanie 

Hopper, BSN, RN, Learning Lab 

Coordinator, Deb Chyka, DNP, RN Clinical 

Assistant Professor, University of 

Tennessee, Knoxville , College of Nursing 

Ms, Hébert is a Medical Simulation 

professional with extensive experience 

working with student nurses in the 

medical simulation environment she is a 

Certified Healthcare Simulation Educator, 

holds a Master of Science degree in 

Medical Simulation and has worked a 

registered nurse in pediatrics, 

Dr. Deb Chyka earned a BSN, MSN, DNP 

in 1981,1985 and 2012 respectively from 

the University of Tennessee Health 

Science Center in Memphis, Tennessee.  

She has extensive experience in pediatric 

nursing, growth and development.  As a 

faculty member for the UTK CON she is 

accomplished in nurse education and 

training. 



www.manaraa.com

 

238 
 

File Name: N404 Pain Management in 6yo Fx Tibia/Fibula 

Date: 11/15/15 

Authors: Deb Chyka, Susan Fancher and Stephanie Hopper 

Brief Summary: 6yo Pediatric male with tibia/fibula fx to be assessed and managed for pain. 

Objectives: 

Cognitive (Knowledge) Technical (Skills) Behavioral (Psychomotor) 

Knowledge of safe dose for 

acetaminophen/kg for patient. 

Calculates acetaminophen dose 

correctly. 

Communicates effectively w/pt. 

with developmental 

appropriate communication for 

6yo. 

Knowledge of developmental 

stages of pediatric patient. 

Prepares acetaminophen 

correctly. 

Integrates parent assessment 

of medication administration 

into patient care. 

Knowledge of different 

pediatric pain scales. 

Administers acetaminophen 

using developmentally 

appropriate route of delivery. 

Communicates effectively with 

healthcare provider in regards 

to unsafe dose.  

 Follows medication rights (right 

patient, right med, right time, 

right route, right dose, etc.) 

 

Objectives of training scenario 

 

 

 

 

 

 

 

 

 

Roles/Guidelines for Roles: 
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1. 2 Student Nurses 

2. Simulated actor for mother  

 

Materials for training scenario 

Scenario Prompt: 

RN Report:  

Frank is 6 y/o male who was brought in yesterday to the ER by Mom and Dad after falling off the trampoline at 

home three days ago. His parents did not realize the severity of the injury and thought he just had a bad bruise. 

They treated his injury with elevation, ice and Tylenol for pain. X-ray revealed a right tibia/fibula fracture. Pt had 

surgery yesterday to repair the fracture. Frank has a 22G angiocath in his right AC with D5 1/2NS with 20KCL 

infusing at 55 ml/hr. He has been getting scheduled morphine q2 hours and Tylenol q4hr PRN for breakthrough 

pain. Frank is complaining of pain. His mom just called right before report and I have not had a chance to assess his 

pain yet. I gave him his morphine an hour ago but he hasn’t had Tylenol in 6 hours. Labs were drawn last night and 

they are in the computer but I haven’t look at them yet.  

VS: HR 118, RR 32, BP 121/56, Temp 37.7 C, Faces Pain Scale showing 4/5 

Diagnostic Results:  

Hepatic Panel: albumin 4.0; Alkaline phosphatase 200; ALT 84 (H); AST 43 (H) 

Standardized Mother/Father Role: 

- Comfort crying child - Rub patient’s abdomen when comforting child, continue rubbing periodically 
throughout scenario so child can complain of abdominal pain 

Supplies Medication and Fluids Manikins[sic]/Equipment 

Oral Syringes and medication 

cups for liquid med 

Oral tablets (chewable and 

non-chewable) and liquid 

Acetaminophen with scan 

labels 

SimJr  

Cup for water D5 1/2NS + 20KCL @ 55ml/hr Computer for 

Docucare(control group) 

Incident reports Ibuprofen liquid Computer and Smart phone 

(intervention group) 

External fixator for tibia/fibula 

fx 

 Pediatric pt room 

Faces Pain scale  Medication scanner 
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- If asked about abdominal pain mother says, “I don’t know, he hasn’t been complaining of his stomach 
hurting, just his leg…” 

- Assist patient in identification of name/DOB and Pain scale if asked  
- If RNs say they will get medicine ask “What are you giving him for his pain?” 

o If RN says “acetaminophen/Tylenol” → mother, “Ok good, that’s what I’ve been giving him at 
home.”  

o If questioned about Tylenol use at home (amount/frequency) mother to say “I’ve been giving him 
a couple spoonful’s whenever he complains of pain” 

- If students bring Tylenol to give to child mother to say, “Is that all you’re giving him? I usually give him 
more than that at home.” 

- If students bring ibuprofen (orange) mother to say, “The medicine I give him at home is grape flavored” 
 

 

SCENARIO: SIMULATOR/Standardized Pt.: 

MONITOR DISPLAY ACCESS Special Notes:  

 
ECG 

 
BP 

 
PIV site:  PICC site:  

 

 

 
Sa02  ART line BP  Central Line: 

 
RR    UVC/UAC: 

INTRAVENOUS FLUIDS 

 
IV fluids:  Rate:  

 IV fluids:  Rate 

 TPN Rate:  

MEDICATIONS 

  

  

  

OXYGEN SUPPLIES AT BEDSIDE 

 

Self-inflating Bag/Mask  T-Piece resuscitator  

Wall 

Oxygen/Suction 

with tubing 

 Nasal Cannula  Flow-inflating Bag/Mask  Vapotherm 
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ROOM SET UP AND EQUIPMENT: R210 

  

 
Mechanical vent with settings:   CPAP 

AIRWAY MANAGEMENT 

 
Laryngoscope Blade sizes:  

 
ETT Sizes:  

 LMA  

CARTS AND EQUIPMENT 

 
Airway tote 

 
Stethoscope 

 
Radiant warmer 

 
Bulb syringe 

 
Code cart  UVC kit 

 Defibrillator  Portable I-stat  Needle 

thoracentesis kit 

 
Transilluminator  EZ IO kit  Pleurevac 

 
Needle aspiration kit 

 
Chest Tube 

 
Pigtail catheter 

MISC ITEMS 

 
Patient chart 

 
Footprint page with BW 

 
Code Sheet 

 Antibiotic order sheet 
 

Scenario 
 

Blank order 

sheets 

 
Lab Results 

 
X-Ray results 

 
Tape  

 Blood  Moulage:  Manikin 

attachments 

 C-section drapes     
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Debriefing Questions 

 

1. In 10 words or less what happened in the scenario?  
2. What would you consider a strength in the scenario, what was a weakness? 
3. Did the participants properly assess the pt’s pain? If so, did they acknowledge the developmental stage 

of the child? 
4. Did the participants correctly calculate the safe dosage range of the medication? 
5. Did the participants complete the 5 rights of medication administration? 
6. Did the participants administer the medication using a developmentally appropriate route for the pt? 
7. In what ways did the participants use their knowledge of development to communicate with the pt? 
8. Do you think the participants properly communicated with the pt’s mother? If so, how? 
9. Was SBAR used in reporting concerns to the healthcare provider? 
10. How will your practice change after this scenario?  

 

 

 

 

 

Active Observer Checklist 

1. Did the participants properly assess the patient’s pain? What scale did they use? How did they 

incorporate the developmental age/stage of the child? 

 

2. Did the participant ask the parent how the child takes medicine at home? Did the participant make sure 

there was a fresh drink for the child? 

 

3. Did the participants accurately calculate the safe dosage range of the medication? Did the participant 

complete the 5 rights of medication administration? 

 

4. Did the participants administer the medication using a developmentally appropriate route for the patient? 

Did the participant ask the parent if they wanted to administer the medication? 

 

5. In what ways did the participants use their knowledge of development to communicate with the patient? 

Do you think the participants properly communicated with the patient’s mother? If so, list some 

examples. 

 

6. Was SBAR used in reporting concerns to the healthcare provider? 
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Training scenario flow chart 
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Debriefing Questions 

1. What just happened in the scenario? 
2. How were the rights of medication administration carried out? 
3. How was the right medication dose determined for this patient? How is the safe dose of 

acetaminophen determined for a child? 
4. How do you follow the developmentally appropriate dose of medication for a child? 

 

5. How did the nurses communicate effectively? With the child? With the parent? With the physician on 
the phone if they called? 

 

6. What about this scenario will change the care you provide to patients in the future? 
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Appendix 3: Score Sheet for Evaluation of Student Nurse Performance 
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Score Sheet for Evaluation of Student Nurse Performance  
1 2 3 4 5 6 7 8 9 

  Pain level 

not assessed 

      Pain 

assessment 

attempted 

with some 

consideratio

n of 

appropriate 

method 

      Pain accurately 

and effectively 

assessed using 

the right tool 

and method 

Asses Pain/Med Need Ascertained                   

  EMR Not 

Reviewed 

   
EMR/MAR 

reviews in 

part/key 

information 

not checked 

(e.g. labs) 

   
Comprehensiv

e Review of 

EMR and query 

of 

questionable 

information 

Review Orders/MAR/EMR (e.g. 

labs) 

                  

  Pt. not 

assessed for 

ability to 

take med 

   
Pt. observed 

and assumed 

suitable to 

take med 

   
Explicit 

assessment of 

pt. ability to 

take med by 

prescribed 

dose, route, 

and 
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contraindicatio

ns 

Asses Pt. condition suitable to rcv 

med 

                  

  Right time 

for 

medication 

not assessed 

   
Timing of 

medication 

checked but 

not verified 

   
Medication 

time window 

validated 

Chk Correct time for med                   

  Form Factor 

not 

considered 

   
Form 

factor/route 

corrected 

after dose 

preparation 

   
Form factor 

validated via 

EMR and 

patient 

preference as 

appropriate 

Suitable form factor/route                   
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  Need to do 

dose 

calculation 

not 

considered 

   
Dose calc 

attempted 

but accuracy 

not 

confirmed. 

Follow-up 

not done* 

   
Dose calc 

performed and 

double 

checked. Calc 

done correctly 

with correct 

follow-up 

action* 

Dose Calculation                   

  Med not 

verified 

   
Med verified 

after dose is 

prepared 

   
Med verified at 

beginning of 

administration 

process 

Retrieve Med/Verify                   

  Patient not 

re-verified 

prior to 

giving med 

   
Patient re 

verified but 

correct 

process is 

not used 

   
Patient 

reverified via 

bracelet, DOB  

Verify Pt.                   

  Med not re-

verified at 

bedside 

   
Med only 

partially re-

verified 

   
Med re-

verified 

correctly 

(dose, route, 

patient, etc.) 
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Verify Med (at patient location)                   

  Med not 

given to 

patient 

   
Med 

administered 

inappropriat

ely (partial 

dose, wrong 

or poor 

technique, 

etc.) 

   
Med correctly 

administered 

to patient 

Deliver Med                   

  Administrati

on of med 

not 

documented 

   
Information 

partially 

documented 

   
Med 

administration 

correctly 

entered into 

MAR 

Document                   
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Example: Filled out data form 

Duration 11:54. 2 

Nurses 

  
   

  
   

  Stephanie Hopper as Mom 

Session 9 (1) 1 2 3 4 5 6 7 8 9 
 

Asses Pain/Med Need 

Ascertained 

                9 Mentioned they were going to give 

Lortab. Got indication from mom 

that level was 6-8 

                      

Review 

Orders/MAR/EMR 

(e.g. labs) 

  
   

  
   

9 Checking noted can't take Lortab 

but can take APAP 

                      

Asses Pt. condition 

suitable to rcv med 

  
   

  
   

9 PT OK to receive med 

                      

Chk Correct time for 

med 

  
   

  
   

9 Correct time verified 

                      

Suitable form 

factor/route 

  
   

  
   

9 Retrieved Tylenol cups, did not 

query mom about form factor but 

did select suspension 

                      



www.manaraa.com

 

251 
 

Dose Calculation   
   

  
   

9 Calculated correct dose, although 

they struggled with the calculation, 

they looked up the correct dose in 

the computer called MD 

                      

Retrieve Med/Verify   
   

  
   

9 Giving APAP 

                      

Verify Pt.   
   

  
   

9 Verified via scan and DOB and name 

from mom 

                      

Verify Med (at patient 

location) 

  
   

  
   

9 Verified via mom and scan 

                      

Deliver Med   
   

  
   

9 Provided med via syringe with drink 

                      

Document   
   

  
   

  
 

                      

Considered 

Contraindications 

1                 Did not note Lortab contained APAP 

Other Notes                     
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Appendix 4: MAE Error App Final Version for Nursing Student Simulation
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http://ilab.engr.utk.edu/hits/tberg/frank  

 
  

http://ilab.engr.utk.edu/hits/tberg/frank
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Appendix 5: MAE Error App Practice Version for Nursing Student Simulation 
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http://ilab.engr.utk.edu/hits/tberg/frannie  

 

http://ilab.engr.utk.edu/hits/tberg/frannie
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Appendix 6: Overview of APP for Student Nurses prior to simulation 
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APP OVERVIEW
Description of Smartphone App for Nursing 

Simulation

 

Overview

• Liked the simplicity and ease of use

• Provided the right amount of information

• Easier to use than the EHR

• The calculator was useful

We discovered that the app was simple 

and easy to use, practice on  

interpreting the information was needed   

 

What Do They Mean – What Should You Do?

Our Goal: See if this app prevents MAEs

 

2 Steps

1. Overview of the App

2. Hands-on practice

 

Things to Remember

• Patient info

• Important information (e.g. new Lab Results)

• Most recent medications given

• Lab results & indications

• Med Orders

• Med Reference

• Handy Dandy Dose Calculator AND comparison to 

Ordered Amount

 

App Overview

• http://ilab.engr.utk.edu/hits/tberg/frannie

App store QR Code Reader 

MixerBox
QR Code Reader

Scan, Inc. 

https://play.google.com/store/apps/details?id=me.scan.and

roid.client&hl=en
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Encounter

What 

would 

you do?

Navigation 

Tabs

 

LAB

What 

would 

you do?

 

Med Calculation

12.375ml

What 

would 

you do?

Yippee Oops/Oho

h

 

Things to Remember

• Patient info

• Important information (e.g. new Lab Results)

• Most recent medications given

• Lab results & indications

• Med Orders

• Med Reference

• Handy Dandy Dose Calculator AND

comparison to Ordered Amount

 

http://ilab.engr.utk.edu/hits/tberg/frank
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Appendix 7: App Worksheet 

 

1. Identify the patient’s name, DOB/age and weight? 

 

 

2. What are the most recent medications, when where they last taken and in what amounts? 

 

 

3. What is the status of the most recent laboratory results? 

 

4. What medications are ordered? 

 

 

5. For medication 1, what dose and amount is ordered? 

 

 

6. What information regarding cautions or alerts is there for the ordered medications? 

 

 

7. For medication 1 provide the dose range, concentration and computed dose range? 

 

8. What is a maximum dose for medication 1? 

 

9. Perform a dose calculation using the dose calculator, how does it compare to the amount ordered in the 

Calculation Confirmation section? 

 

10. Is there anything notable in the Laboratory Test Results Section? 
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Appendix 8: Medication Administration Error Decision Tree (Partial)   
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Appendix 9: Representative drug packaging with similar appearance 
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